
 
 

THE EFFECTS OF WARMING, NITROGEN ADDITION AND BARK HERBIVORY 

ON ABOVE- AND BELOW-GROUND VOLATILE ORGANIC COMPOUNDS OF 

SCOTS PINE (Pinus sylvestris) SEEDLINGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Abimfoluwa Gideon Olaleye 

     Master of Science Thesis 

     Department of Environmental Science 

     University of Eastern Finland 

     December 2015 



 
 

 

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, 

Environmental Science, Department of Environmental Science, Environmental Biology 

program  

 

Olaleye, Abimfoluwa Gideon: The effects of warming, nitrogen addition and bark herbivory 

on above- and below- ground volatile organic compounds of Scots pine (Pinus sylvestris) 

seedlings 

 

Master of Science thesis 63 pages 

Supervisors: Anne Kasurinen (PhD), Päivi Tiiva (PhD), Elina Häikiö (PhD) 

December 2015 

Keywords: Warming, Nitrogen addition, Scots pine, VOC, pine weevil, bark herbivory 

 

ABSTRACT 

Climate warming is associated with increasing nitrogen load and higher herbivory pressure in 

the future. As such, the emissions of volatile organic compounds (VOCs) from the shoots and 

rhizosphere of Scots pines are predicted to change. Changes in VOC emission pattern would 

affect the boreal ecosystem as VOCs influence plant defense and interactions as well as 

atmospheric feedbacks. Scots pine (Pinus sylvestris) seedlings grown in chamber conditions 

were exposed to warming (+2 °C increase to spring, summer and early autumn ambient 

temperature levels simulating the May-September ambient day and night temperatures), 

nitrogen addition (30 kg N ha-1 a-1 increase) and bark herbivory in growth chambers  from 

May to September in 2014. The shoots emitted mainly monoterpenes (MNTs) while 

rhizosphere emitted mainly other VOCs (OVOCs). In general, more VOC emissions occurred 

during the first month of the experiment (May), but later the emissions of MNTs, 

sesquiterpenes (SQTs) and OVOCs were reduced. Nitrogen addition enhanced the effects of 

warming and herbivory and resulted in increased SQT and MNT emissions from the shoots of 

Scots pine. Herbivory also caused increased emissions of OVOC from the rhizosphere of 

Scots pine. The emission of volatile organic compounds increased as gas exchange declined 

suggesting that Scots pine can emit VOCs passively. 
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INTRODUCTION 

Plants live in very complex environments and as such they come in interaction with quite a 

number of stressors (Ponzio et al. 2014). The plant-environment interactions and 

communications are shaped and mediated by volatile organic compounds (VOCs) which the 

plants emit (Laothawornkitkul et al. 2009). The different stress factors present in the plant 

environment can affect VOC emissions (Loreto et al. 2014). Hence, it is important to 

understand how multiple stressors affect the emission of volatile compounds as this could 

help in predicting the effects of global climate change. 

 

Volatile organic compounds (VOCs) are important in atmospheric chemistry, as they are 

known to react with nitrogen oxides (NOx), hydroxyl radicals (OH), and ozone (O3), in the 

troposphere, affect the oxidation capacity of the atmosphere, and can in combination with 

sufficient concentration of nitrogen oxide lead to the production of ozone and other photo-

oxidants thus significantly contributing to the formation of secondary aerosol (Pinto et al. 

2010). According to Guenther et al. (2012), the quantity of biogenic volatile organic 

compounds (excluding methane) emitted by plants to the atmosphere amounts to 1 Pg C per 

year, the bulk of which is produced by trees largely due to their big size and lengthy life span 

(Holopainen 2011). The type and quantity of VOCs produced by plants depends largely on 

environmental conditions such as changes in temperature, light and humidity (Tarvainen et al. 

2005, Yuan et al. 2009) and stress such as herbivore attacks (Loreto et al. 2000)  or changes 

in nutrient supply  (Kivimäenpää et al. manuscript).  

 

The soil and rhizosphere are complex systems where soil microbial community interacts with 

each other and with organic nutrients in the soil, and many biotic processes (e.g. nutrient 

cycling, decomposition) also take place in the soil. It is also a highly heterogeneous reservoir 

of biological diversity, abundant in fungal and bacterial cells (Egamberdieva et al. 2008), 

plant tissues, decomposing litter and dead organic materials (Penuelas et al. 2014), all of 

which contribute to the emissions of VOC from the soil via microbial degradation (Kögel-

Knabner 2002; Penuelas et al. 2014). Data from recent studies conducted in temperate, boreal 

and Mediterranean ecosystems show that soil VOC emissions are between zero to three order 

of magnitude lower than those emitted from the shoots (Penuelas et al. 2014). Plants also 

produce and release secondary metabolites into the rhizosphere, thus making the below-
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ground system as much an important source (and/or sink) of VOCs as the above-ground parts 

of plants (Cesco et al. 2012).  

 

The past decade spanning from 2003 to 2012 has seen the global mean temperature increased 

by an average value of 0.78ºC from 1880 to 2012, and this increment is predicted to continue 

to increase to an approximate value of 2 oC by the end of this century (IPCC 2013). This 

warming is expected to also increase soil temperature, and soil warming has been shown to 

increase the rate of photosynthesis (Pumpanen et al. 2012). Nitrogen exists in the air in the 

forms of nitric oxide (NO) and nitrogen dioxide (NO2) which are pollutants, and these 

different forms of nitrogen are deposited on many ecosystems (Manning et al. 2006). Once 

deposited, soils rapidly accumulate nitrogen (Raciti et al. 2011), and according to Korhonen 

et al. (2013), N is accumulating in Southern Finland Scots pine forests at a rate of 7 kg N ha−1 

yr−1, while the annual deposition rate in European boreal forests is estimated to be at 10 kg N 

ha−1 yr−1 (Flechard et al, 2011; Mustajärvi et al. 2008). This increasing temperature and 

accumulating nitrogen can affect natural ecosystems, Kivimäenpää et al. (manuscript) found 

that N addition enhanced the effect of warming and increased the emission of MNT from 

Scots pine by as much as 4 fold. Previous studies have also linked increases in the emission 

of VOCs to the increasing temperature (Holopainen and Gershenzon 2010).  

 

One of the effects of climate change is the redistribution of insects (Ammunet et al. 2012; 

Logan et al. 2003), which in turn could mean more frequent herbivore attacks in forests and 

ultimately lead into increased VOC emissions.  Even relatively small amounts of 

insect/herbivore attack on plants can significantly impact VOC emissions at the plant level 

(Heijari et al. 2011). Pine weevils (Hylobius abietis L.) are known to feed and cause damage 

on the bark of Scots pine seedlings, increasing the quantity of BVOCs emitted by the 

seedlings (Heijari et al. 2011). Plants also can release more volatiles to protect themselves 

against further herbivore attack (Blande et al. 2014; Furstenberg-Hägg et al. 2013). 

 

In this work the above- and below-ground VOC emissions of the common conifer in the 

boreal zone, Scots pine (Pinus sylvestris L.), were measured while the trees were exposed to 

experimental warming, moderate N addition and bark herbivory alone and in combination 

during year 2014. Experiment was performed in growth chambers for over 5 months (from 

early April until end of September), the growing conditions in the chambers simulated the 

growing season conditions from May to September of Central Finland, while herbivores (pine 



8 
 

 

weevils, Hylobius abietis) were allowed to feed on bark for 24 hours in early July 2014. The 

main aim was to assess if the single effects of warming, N addition and bark herbivory were 

similar or different from the interaction effects of these factors, as there is still relatively little 

knowledge about the above interactions.  
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2. SCOTS PINE AND VOCs IN THE CHANGING CLIMATE 

2.1. SCOTS PINE AS A VOC EMITTER 

The boreal ecosystem (taiga) is the largest ecosystem on earth, and in Europe this ecosystem 

is dominated by coniferous trees which are ever-green and active in cool weather (Aaltonen 

et al. 2013). Scots pine (Pinus sylvestris L.) is a widely spread and ever-green coniferous tree 

species native to northern Europe and very common in the European boreal forest. With over 

one hundred subspecies, varieties, and forms of Scots pine described, it spans from the 

Scandinavia to the coastal area of eastern Siberia of Russia where it is an important tree used 

as pulp and timber products (Hämet-Ahti et al. 1992). 

 

In Finland, conifer forests are dominated by Scots pine (50% of trees) (Finnish Forest 

Research Institute 2013). Scots pine is known to emit monoterpenes, δ-3-carene and alpha-

pinene being the most abundant, accounting for between 60 – 70 % of total VOC emissions 

(Rinne et al. 2000; Tarvainen et al. 2005). Heijari et al. (2011) found that sesquiterpenes 

accounted for only 1.2 % of emissions from Scots pine, unlike other boreal species, Norway 

spruce (Picea abies L.) and downy birch (Betula pubescens L.), which emit sesquiterpenes in 

higher amounts especially in the summer months (Hakola et al. 2003).  

 

2.2. BIOSYNTHESIS OF PLANT VOLATILES 

Plant volatiles are classified into three major groups based on their derivatives:  terpenoids 

(or isoprenoids), phenylpropanoids/benzenoids, and fatty acid derivatives (Loreto et al. 

2001). The biochemical pathways by which these plant volatiles are synthesized entails series 

of enzymatic modifications such as hydroxylations, acetylations, and methylations (Pichersky 

et al. 2006). It is this series of conversions that increases the diversity of the volatiles emitted 

by the plants and the large variety of terpenoids emitted by Scots pine. 

 

Terpenoids (isoprenoids) are the largest class of plant secondary metabolites, they include 

many volatile compounds (see Table 1). Terpenoids have a high vapor pressure which allows 

them to be released into the atmosphere. Terpenoids being lipophilic liquids and having high 

vapor pressures easily cross membranes and are then released into the atmosphere or soil 

(Pichersky et al. 2006). Terpenoids are synthesized from the methyl-erythritol-

phosphate/mevalonic acid (MEP/MVA) biochemical pathway and originate from the 
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universal five carbon precursors, isopentenyl diphosphate (IPP) and its allylic isomer 

dimethylallyl diphosphate (DMAPP), which are derived from two alternative pathways 

(Rodriguez-Concepcion and Boronat, 2002). Terpenoids in conifers are synthesized in the 

resin cells or ducts within the tissues of the stem and needles (Miller et al. 2005) and can then 

be released once the plant is attacked by herbivore or it suffers a mechanical damage. 

 

Table 1. Classification of terpenoids based on their number of carbon units (Engelberth, 

2006) 

Class Carbon units 

Isoprene C5 

Monoterpenes C10 

Sesquiterpenes C15 

Homoterpenes C11 and C16 

Diterpenes C20 

Sesterterpenes C25 

Triterpenes C30 

Sesquaterpenes C35 

Tetraterpenes C40 

Polyterpenes >C40 

 

Mevalonate pathway (produces Mevalonic acid MVA) and non-mevalonate pathway 

(produces methylerythritol phosphate MEP) are two independent and separate pathways that 

form the C5-isoprene building units. The sesquiterpenes (C15) are formed by the MVA 

pathway, while the MEP pathway produces volatile hemiterpenes (C5), monoterpenes (C10) 

and diterpenes (C20). The mechanism of transport of these volatiles from their site of 

biosynthesis to the point of emission into the atmosphere is still a subject of research; 

however, a review by Jetter (2006) proposed that it involves four steps: 

i) intra-cell trafficking  

ii) transport across the plasma membrane and cell wall 

iii) transfer through the cuticle, and  

iv) evaporation at the surface of the cuticle  
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The biosynthetic route of homoterpenes (C11 and C16) is still unclear, but Degenhardt and 

Gershenzon (2000) suggest that they are derived by oxidative degradation of geranyl-linalool 

(C20) and (3S)-(E)-nerolidol (C15). Asides homoterpenes, plants produce other volatile 

compounds that are derived from carotenoids and have 8 to 18 carbon skeletons or isoprene 

units. These plant volatiles are also synthesized de novo with their production being 

temporally and spatially regulated (Rodriguez-Concepcion and Boronat, 2002). Plants can 

also emit other reactive volatile organic compounds (OVOC) which accounts for 

approximately 22.5% of VOCs emitted annually (Guenther et al. 1995). 

Kesselmeier and Staudt (1999) also noted that plants emit alkanes, alkenes, alcohols, esters, 

carbonyls, and acids from biogenic sources. Plants also emit trace amount of Green leaf 

volatiles (GLVs). GLVs are C6–aldehydes, C6-alcohols, and their acetates emitted by green 

plants. They are biosynthesized via the lipoxygenase/hydroperoxide lyase (HPL) pathway. 

However, plants rapidly produce and emit greater quantity of GLVs after wounding (Matsui 

2006) 

 

2.3. THE ROLE OF VOCs 

 

In nature, plants live in a complex and diverse environment where they are involved in many 

forms of interactions (Loreto et al. 2014; Ponzio et al. 2014), and are exposed to a wide range 

of biotic and abiotic stressors. To communicate and interact with the environment, plants 

emit VOCs. According to Dudareva et al. (2006), over 1700 volatile compounds have been 

identified from more than 90 plant families. The VOCs serve a host with several functions as 

they can aid seed dispersion by attracting pollinators, and they also help in protecting plants 

from pathogens, herbivores, florivores and parasites.  

 

VOCs released by herbivore-infested plants help plant to survive the herbivore attack 

(Dudareva et al. 2013). VOCs serve as semiochemicals, mediating plant-plant interactions 

and act as a form of an alarm signal, inducing the expression of defense genes and causing 

the emission of volatile compounds (Furstenberg-Hägg et al. 2013). The volatile compounds 

emitted function either in form of direct defense or an indirect effect. Direct effect means that 

the emitted VOC repel or intoxicate microbes and animals/herbivores immediately after 

release (De Moraes et al. 2001; Kessler and Baldwin, 2001). The indirect effect means that 

VOC emission increases the attractiveness of the leaves to the natural enemies (carnivores) of 

the damaging herbivore thereby decreasing the susceptibility of the plant to the damaging 
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herbivores (Rasmann et al. 2005; Blande et al. 2014). Attacked plants are also able to 

communicate with neighbouring plants through the VOCs they emit and alert them of a 

potential future attack (Furstenberg-Hägg et al. 2013), thereby making the alerted plants 

better prepared for a stronger response once attacked (Vancanneyt et al. 2001; Junker et al. 

2011). Therefore, VOCs help in driving plant biodiversity and reproductive advantage by 

ensuring their reproduction, greater plant productivity and continued existence.  

 

Plant growth and development is an energy-demanding process that also requires good 

nutrient availability (Newingham et al. 2007). Therefore, plants use VOCs to help regulate 

their defense according to need, thereby helping to conserve valuable resources necessary for 

their growth and development, by reallocating some of the resources upon attack. In this way, 

the plant can sustain the high photosynthetic activity needed for compensatory growth 

(Newingham et al. 2007). While feeding on plants, herbivores release elicitors such as lytic 

enzymes, or fatty-acid-amino-acid conjugates (FAC) from their oral secretions into plants 

(Musser et al. 2002). These elicitors make the plant to emit a greater variety and quantity of 

volatile compounds (Maffei et al. 2004). These VOCs are not only emitted from the sites of 

the plants attacked by the herbivore but also from the other parts of the plant. Musser et al. 

(2002) suggested that the VOCs emitted from injured plant show some level of specificity 

that corresponds to the type of the attacking herbivore thus acting as direct repellents of such 

herbivores. This specificity of the VOCs emitted by the plants upon attack by herbivores 

could be a potentially important property that can be used in agriculture, forestry and pest 

control. 

 

Different VOCs have different fates once released into the atmosphere, depending on their 

reactivity and degree of volatility. VOCs undergo photochemical reactions in the atmosphere 

which can lead to the formation of secondary organic aerosols (Koch et al. 2000; Pinto et al. 

2010). VOCs are O3 precursors, but they are also easily oxidized by O3. VOCs and oxides of 

nitrogen (NOx) react in the presence of  solar UV-radiation resulting in the production of 

ozone (O3) in the troposphere. VOCs react with O3, OH and NO3 radicals and transform to 

less volatile organic compounds. These VOCs then in turn condense as secondary organic 

aerosols (SOA) and in a positive feedback process, leads to the formation of more O3 (Llusia 

et al. 2002; Pinto et al. 2010, Kulmala et al. 2013).SOA particles warm the climate locally, 

reflect solar radiation back to space, and have regional or continental effects (Tunved et al. 

2006).  
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The presence of ozone can disrupt the activation of defense genes (Heath 2008), decrease 

photosynthesis (Long and Naidu 2002), and alter the emissions of VOCs thereby affecting 

plant interactions (Pinto et al. 2007). Thus, VOCs indirectly play an important role in the 

radiation balance of the atmosphere and can cause unpredictable damages or effects on the 

atmosphere-biosphere chemistry and climate as a whole (Penuelas et al. 2009) especially in 

or around urban areas where air quality is often poor due to natural and anthropogenic air 

pollutions. 

 

Roots provide anchorage, mechanical support and serve as a means of nutrient and water 

uptake for plants (Fitter 1991). However, recent findings reveal that plants also emit diverse 

VOCs from their roots (Loreto et al. 2001; Robert et al. 2012) and that soil and roots can be 

both a source and sink for VOCs (Guenther 1999; Rasmann et al. 2005; Smolander et al. 

2006; Leff and Fierer 2008). Roots also carry out other specialized roles such as regulating 

the microbial activity and nutrient availability in their immediate surroundings by 

synthesizing, accumulating and secreting a wide range of organic compounds to the 

rhizosphere around them (Lin et al. 2007). They also mediate interactions among bacteria, 

fungi and plants, alter rates of nutrient cycling (Smolander et al. 2006), as well as serve as a 

source of carbon and energy for microbes present in the soil (Lin 2007). Root volatiles 

contribute to the rhizosphere defense system by acting as antimicrobial or antiherbivore 

substances or by attracting enemies of root-feeding herbivores (Robert et al. 2012). They can 

also inhibit or reduce the seed germination and growth of competitive neighboring plants (i.e. 

have allolopathic effects), encourage symbioses as well as alter the soil physical and chemical 

properties (Nardi et al. 2000).   

 

2.4. WARMING AND VOC EMISSIONS IN BOREAL REGION 

The mean global temperature increased by 0.78 oC in the last century, and with a further 

increase of 2 oC is expected to occur by the end of this century (IPCC 2013). Boreal forests 

are dominated by conifer trees, which are known emitters of significant quantities of 

monoterpenes and sesquiterpenes (Rinne et al. 2009), and Finland is predominantly covered 

by boreal forests (Blanch et al. 2007). Warmer climate means an elongated growing season 

and longer period of plant activity, a long term change in land cover and species composition. 

Due to the warmer temperatures in some ecosystem, more plants are able to grow there and 
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produce also more litter, which translates to higher fertilization of forests and increased 

quantity of volatile compounds emitted (Blanch et al. 2007). 

 

The quantity of BVOCs emitted is expected to increase with increasing temperature 

(Penuelas and Staudt 2010). Simulation studies by Briceno-Elizendo et al. (2006) also 

showed that warming and increased precipitation could enhance growth in boreal forests by 

as much as 50%. Ge et al. (2013) have predicted increased productivity and dominance of 

conifers in Finnish forests as global warming increases, this increased dominance is predicted 

to be stronger in the northern part of Finland than in the south and would cause a significant 

increment in the quantity of VOCs emitted. 

 

2.5. NITROGEN ADDITION EFFECTS ON VOC EMISSIONS 

One of the negative effects of urbanization is the emissions of high concentrations of air 

pollutants from several anthropogenic sources such as traffic, combustion and energy 

production. Increasing human population has also placed increased demands on agricultural 

outputs (Erisman et al. 2003; Bell et al. 2011). N fertilization tends to increase the 

productivity of boreal forests (Saarsalmi and Mälkönen, 2001). Therefore the use of nitrogen 

fertilizers has increased (Mustajärvi et al. 2008). According to Korhonen et al. (2013), 

atmospheric deposition from industries, traffic and agriculture is the largest external N input 

into forests. The nitrogen released into the atmosphere can be deposited in various forms; wet 

and dry, oxidized and reduced. The nitrogen from combustion processes are in the NOx form, 

while those from agricultural fertilization are in the NH3 form. When deposited nitrogen 

travels from the atmosphere through forest canopies and vegetation to the soil, it undergoes 

different series of transformation reactions (such as N fixation, mineralization, nitrification, 

leaching, plant assimilation, ammonia volatilization, denitrification and immobilization) 

before the compounds are then taken up by plants through their roots or foliage (Hyvönen et 

al. 2007). 

Nitrogen oxides (NOx) which include nitric oxide (NO) and nitrogen dioxide (NO2) are 

major components of anthropogenic N emissions. These nitrogen oxides are capable of 

reacting with hydroxyl radicals in the troposphere and cause environmental effects such as 

formation of secondary organic aerosols (Pinto et al. 2010). Study by Bell et al. (2011) 

showed that exposure to NO2 and NO fumigation can have varying effects on plant growth: 

herbaceous plants showed species-specific responses such as increasing or decreasing rates of 
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photosynthesis and stomatal conductance to different levels of NO2 and NO both singly and 

in combination. 

Ruoho-Airola et al. (2015) suggested that at current emission levels (~7 kg N ha-1yr-1), 

nitrogen deposition poses no hazard but could even increase forest growth in 

Finland/Scandinavia. Flechard et al. (2011) estimated that between approximately 10 kg N 

ha-1yr-1 is deposited in European boreal forest. However, the deposition level is strongly 

dependent on weather conditions, especially precipitation amount (Ruoho-Airola et al. 2015). 

Studies by Kivimäenpää et al. (manuscript) found that nitrogen availability can enhance the 

effect of warming in increasing BVOC emissions from Scots pine. In this open field exposure 

experiment, warming alone increased, and N addition in combination further increased VOC 

emissions. 

2.6. HERBIVORY AND VOC EMISSIONS 

One of the effects of climate change is an expected increase in herbivore outbreak especially 

in boreal regions (Jepsen et al. 2008), and an increase in VOC emissions, as plants are known 

to emit VOCs when attacked by herbivores (Arimura et al. 2004). Previous laboratory studies 

have shown that bark herbivory by pine weevil increases monoterpene emissions from Scots 

pine (Faiola et al. 2015). Pine weevil, Hylobius abietis, (Fig. 1) is one of the most prominent 

and commercially important herbivore in European forests. It feeds on the bark of young 

seedlings and on freshly cut Scots pine (Heijari et al. 2011) and can deform the stem, affect 

tree growth and lead to increased mortality of forest trees which are of extensive 

environmental, commercial and aesthetic importance. Pine weevils are often attracted by 

volatile compounds, especially α-pinene and ethanol, and they feed optimally at temperatures 

between 19 and 28 °C (Brixey, 1997).  
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Figure 1. Adult pine weevil (Hylobius abietis L.) feeding on Scots pine. Photo by: Jarmo Holopainen 

 

Pine weevil feeding has also been shown to induce the emission of MNT and SQT from both 

the damaged bark and intact shoots of Scots pine (Heijari et al. 2011) and Norway spruce 

(Blande et al. 2009). The study by Blande et al. (2009) showed that herbivory feeding by pine 

weevil increased MNT emissions by as much as 8 folds, SQT emissions by about 45 folds 

and GLV emissions by almost 4 folds from Norway spruce.  

 

Heijari et al. (2011) found that pine weevil feeding on the bark of Scots pine nearly 

quadruples the emission of monoterpenes while it increases the emission of SQTs by as much 

as seven fold. The mode of attack of herbivores (i.e. chewing, sucking or piercing) also 

affects the kind of volatile compounds plants emit after attack  as it determines the pathway 

and mechanism of defense pathway that would be activated (Loreto et al. 2001; Ponzio et al. 

2013; Loreto et al. 2014).  

 

  

http://www.pbase.com/holopain/educational&page=6
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3. AIMS OF THE RESEARCH 

 

The main aim of this research was to measure the quantity of volatile organic compounds 

emitted by Scots pine seedlings exposed to warming (+2 oC temperature elevation), nitrogen 

addition (dose of 30 kg N/ha/a) and bark herbivory alone and in combination. Experiment 

was conducted in controlled chambers for over a five-month period (May-September) in 

2014. The research questions were as follow:  

 

1. Does nitrogen addition, attack by herbivore and warming singly or in any 

combination have an effect on the emission dynamics of the shoots of Scots pine 

seedlings? 

2. Does nitrogen addition, attack by herbivore and warming singly or in any 

combination have an effect on the emission dynamics of the rhizosphere of Scots pine 

seedlings? 

3. Are single exposure effects on VOCs similar or different from those of interaction 

effects? 
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4. MATERIALS AND METHODS 

4.1 CHAMBER EXPERIMENT: Experimental design, plant and animal material  

Scots pine seedlings originating from Southern Finland (seed origin: Imatra, N 61o 9' E 28o 

47', 60 m) were grown in the nursery of the Natural Resources Institute Finland (previously 

known as Finnish Forest Research Institute), Suonenjoki, Finland. The seedlings were kept in 

an open-field nursery at the Research Garden, University of Eastern Finland, Kuopio campus, 

over winter 2013-2014. One month before the start of the chamber experiment, the Scots pine 

seedlings were moved indoors to a cold room (+4 oC) on 31.3.2014, where they were for 

three days and were then transferred on 3.4.2014 to +6 oC for two days and at that time they 

were also sprayed with water. On 5.4.2014 they were moved to a room with +10 - 14 oC for 

one day and sprayed with water before they were finally moved to greenhouse conditions (c. 

+20 oC). Seedlings were planted in pots on 8.4.2014. 

In total, 48 randomly selected Scots pine seedlings were planted into 5 L pots (20 x 20 x 20 

cm, Orthex Eden, Oy Orthex Finland Ab, Finland) filled with forest soil which was collected 

from a Scots pine stand located near the Natural Resource Institute Finland, Suonenjoki 

Research station. Before placing the soil into the pots, it was sieved through 0.5 cm mesh to 

remove stones and debris. In the bottom of each pot, there was a 2 cm layer of LECA to 

prevent sand and finer particles to block holes in the bottom of pots (holes allowed excess 

water to drip out). Experimental seedlings were planted on 8th of April 2014, and at that time 

their initial stem height and base diameter were also measured. Seedlings were one-year-old 

in the beginning of the chamber experiment. 

On the planting day, half of the pine seedlings were randomly selected to nitrogen (N) 

addition treatments, and they received a dose of 30 kg N/ha/a (Peatcare Slow Release 1 

fertilizer, N:P:K, 9:3.5:5, Yara), whereas the rest of the seedlings were not fertilized and 

served as N treatment controls. On 9th of April 2014, potted seedlings were transferred from 

the Research Garden to the Department of Environmental Science, University of Eastern 

Finland, Kuopio, where chamber experiment was initiated in six Weiss growth chambers 

(Weiss Bio 1300, Weiss Umwelttechnik Gmbh, Germany). Seedlings were divided evenly 

between the six chambers so that each chamber contained in total 8 seedlings (6 chambers x 8 

seedlings = 48). Three of the chambers were maintained at ambient temperature conditions 

and three chambers were in the warming treatment (+ 2 oC increase to spring, summer and 
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early autumn ambient temperature levels simulating the May-September ambient day and 

night temperatures), thereby giving a replicate unit of 3. In each chamber half of the seedlings 

were N-fertilized (N+) and half of the pines were growing in the prevailing soil N level (N- 

seedlings). 

Temperature programs in chambers were based on the long-term weather data collected from 

Ruohoniemi experimental field, UEF, Kuopio. The maximum light intensity was 250 µmol 

m-2 s-2 (PAR), the photoperiod ranged from 17:7 h to 20:4 h (light:dark h). Other chamber 

details are shown in Table 2. The trees were watered in the chambers with tap water as 

needed, and extra care was taken to prevent them from being water logged or too dry. In 

addition to seedling pots, there was one empty pot (no soil +  no seedling)  and one pot 

containing only forest soil serving as blank controls for soil+rhizosphere VOCs. The pots 

positions in the chambers were mixed so that they were not all the time in the same position 

during the duration of the experiment.  

Pine weevils (Hylobius abietis) for the herbivory experiment were trapped in two pine 

dominated and recently (one year ago) clear cut state forest sites in Pieksämäki region in 

Central Finland (Silmutsuo: N 62º24'46" E 26º49'48" and Tervanen: N 62º28'12" E 27º2'48"). 

The used pitfall traps were lidded plastic buckets (3 L) with eight (2 cm Ø) holes drilled 

around the top edge. Turpentine and 96% ethanol were used as bait in the traps; separate test 

tubes attached inside the trap contained about 15 ml of each bait. The tubes were covered 

with perforated parafilm to allow slow evaporation of the baits. 30 and 28 traps were buried 

in the ground in Silmutsuo in Tervanen, respectively, so that the holes were at the ground 

surface level allowing walking weevils easily enter the traps (Figure 2a). 
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Figure 2a-b. a) Pitfall placed in the ground. The baits (turpentine and 96% ethanol) were in 15 ml 

tubes attached to the interior wall of the trap. Bait tubes were covered so that the animal did not drop 

in them and drowned into the bait liquids. Traps were covered with lid (rain cover). Animal entered 

the trap by walking through the holes carved 2 cm below the lid of the trap. Photo by Gideon Olaleye. 

b) The restriction of the herbivore feeding to a part of the Scots pine seedlings covered by the plastic 

cup. Nilsiä quartz sand prevents the herbivore from escaping into the soil while the cup, tapered and 

plugged with wool, restricts its movement to other part of the plant. Photo by Anne Kasurinen. 

 

 

a 

b 
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Table 2. Growing conditions of the Scots pine trees in the chambers during the six months of the experiment. AT = ambient temperature chamber, 

E = elevated temperature chamber (n = 3 per temperature treatment). May program ran from 9.4.2014 to 3.6.2014, June program ran from 

3.6.2014 to 4.7.2014, July program ran from 4.7.2014 to 4.8.2014, August program ran from 4.8.2014 to 1.9.2014, and September program ran 

from 1.9.2014 to 2.10.2014. Night time is defined as zero light level, and maximum PAR level was 250 µmol m-2 s-1. Values in table are averages 

of three chambers per temperature level and minimum and maximum temperatures and relative humidity’s (ranges for three chambers per 

temperature level) for each month. RH% is relative humidity %.  

  Temperature 
oC 

min-max oC RH% min-maxRH Hours Time max PAR 

hours 

  Day Night Day Night Day Night Day Night Day Night Day Night Day 

May AT 12.1 8.8 7.6-15.9 8.2-9.4 65.6 77.1 54.0-85.1 74.6-79.5 20h 4h 04-24 24-04 3h 

ET 14.1 10.8 9.6-17.9 10.2-11.3 65.6 77 52.4-81.7 74.3-79.7 20h 4h 04-24 24-04 3h 

June AT 14.8 10.9 10.1-18.2 10.2-11.8 70.3 84.9 54.2-88.6 81.8-88.2 20h 4h 04-24 24-04 10h 

ET 16.8 12.9 12.1-20.1 12.2-13.8 70.4 84.9 49.7-88.3 81.8-87.9 20h 4h 04-24 24-04 10h 

July AT 19.7 15.4 15.1-22.7 15-16.1 76.8 93.1 63.6-97.4 89.4-95.6 20h 4h 04-24 24-04 9h 

ET 21.7 17.4 17.0-24.4 17.0-18.1 76.7 93.1 63.8-96.2 89.9-95.5 20h 4h 04-24 24-04 9h 

August AT 16.6 13.1 12.1-19.6 12.2-14.3 78.8 91.6 66-98 85.8-96.2 17h 7h 05-23 22-05 5h 

ET 18.6 15.1 14.1-21.3 14.2-16.3 78.8 91.7 65.5-97.2 85.8-96.4 17h 7h 05-22 22-05 5h 

September AT 11.5 9.4 9.5-14.2  9-10 82.5 93 69.4-96.7 90.8-95.3 17h 7h 07-24 24-08 5h 

ET 13.5 11.4 11.4-16.1 11.0-11.9 82.5 93 73.8-94.6 90.3-95.4 17h 7h 07-24 24-07 5h 
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The traps were set on 30 May, 2014 and the animals were collected on 5, 9 and 16 June of 2014. 

Altogether 58 weevils were caught during the trapping period. The weevils were kept in plastic 

containers in refrigerator at +4 – +5 oC and fed with fresh pine twigs before the experiment.  

 

The herbivory experiment was performed on the 30.6.-1.7.2014. Prior to the experiment, the 

weevils were kept at room temperature to make them more active and their weight was taken 

(initial weight of the animals ranged between 59,85 – 133,70 mg). Then weevils were placed in 

petri dishes and starved for 24 hours prior to the experiment in order to induce feeding. After 24 

h animal weights were taken again (now they ranged from 59,40 – 128,45 mg). Two weevils was 

introduced to 12 Scots pine seedlings used for the herbivory experiment, i.e., one N- and one N+ 

seedling from each chamber were used for the herbivory feeding (H+). The weevils were 

introduced to the seedlings in a localized way (Figure 2b). Plastic cups (250 ml) were cut from 

one side open and carefully placed around the basal stem on top of the soil. Animals (2 weevils 

per cage) were placed inside the cups and then cup was sealed with tape along the cut part and 

cotton wool covered the cup part touching the stem. Wet Nilsiä quartz sand (particle size 0.5-1 

mm, producer: SP Minerals Oy Ab, Finland) was used to seal the cup part touching the soil so as 

to prevent the weevils from escaping to the surrounding pots and seedlings during the feeding 

period. Animals were allowed to feed for 24 hours after which they were taken out and their 

weight were taken again immediately after the feeding experiment to check for weight gain. 

After the feeding experiment, the animal weights ranged from 60,5 – 132,75 mg, indicating a net 

weight gain in the weevils. The cup effect on VOCs was tested by placing a similar cup cage 

around the stem but without animals (12 seedlings, one N+ and N- seedling per chamber), but 

since these seedlings did not have clear difference in their VOC emissions to the cupless 

seedlings, all the remaining seedlings without animals were combined together to represent the 

H- treatment. Thus, in total there were eight treatments in the chambers: 1) ambient temperature 

+ no N addition + no animals = control (C); 2) ambient temperature + N addition + no herbivory 

= N; 3) ambient temperature + no N addition + herbivory = herbivory (H); 4) ambient 

temperature + N addition + herbivory = NH; 5) elevated temperature + no N addition + no 

herbivory = T; 6) elevated temperature + N addition + no herbivory = TN; 7) elevated 

temperature + no N addition + herbivory = TH and 8) elevated temperature + N addition + 

herbivory = TNH (n = 3 for each treatment).  
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4.2. GAS EXCHANGE AND NEEDLE GROWTH MEASUREMENTS 

Gas exchange parameters (photosynthesis and stomatal conductance) were measured with 

infrared gas analyzer (Licor 6400XT, Licor, Lincoln, Nebraska, USA) attached to opaque conifer 

chamber (Licor 6400-22, Licor, Lincoln, Nebraska, USA) once a month from 29.4.2014 onwards 

during the whole chamber experiment. Measurements were performed from old shoot in the first 

measurement (May), and from old and new shoots in the latter measurements (June-September) 

from two seedlings per chamber making a total of 12 Scots pine seedlings used for the gas 

exchange measurements. The light saturation point of photosynthesis in order to find out the 

PAR to be used in the gas exchange measurements was determined from a light curve (fig 3), 

1500 CO2 µmol m-2 s-1 was used as the light level in the measurements.  

For these measurements, c. 7.5 cm of old main shoot were placed inside the conifer chamber, 

whereas in new shoot measurements the length of the measured shoot in the conifer chamber 

varied between 1,3 – 8,2 cm. Licor uses certain fixed needle area in Pn and Gs data calculations, 

therefore the gas exchange data needed a needle area correction. For the needle area correction, 

the total number of needles per 2 cm length of old shoot from one side of the stem was counted 

and multiplied by two to get the needle number on both side of the 2 cm length of the stem, and 

then this was extrapolated to 7,5 cm to get the needle number of the whole old shoot length 

inside the conifer chamber. For the new main shoot, all the needles along the whole length of one 

side of new shoot was counted as the whole new shoot was placed inside the conifer chamber. In 

addition, needle length from five needles per old shoot measurement site (2 cm-long area in old 

shoot) and from new main shoot were measured. For the needle area correction, new main shoot 

total length was also measured. Then formula: Needle Area = ((4.2235 x needle length) – 

15.6835) x needle number in cuvette (Flower-Ellis and Olsson 1993) was used to correct the 

needle area.  
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Figure 3. Light intensity curve showing the light saturation point at which gas exchange measurements 

were done. 1500 µmol m-2 s-1 was the light level used. 

 

4.3. VOC SAMPLING and ANALYSIS 

VOC samples were collected from the shoots and rhizosphere of all 48 Scots pine seedlings. 

Sampling was performed once a month during the experiment under May to September 

conditions (altogether five times). For the shoots, the sampling was carried out on April 29-30, 

June 17-18, July 21-22, August 26, and September 29, 2014, while the rhizosphere sampling 

took place on May 5-7, June 25-27, August 4-6, September 30 to October 2, 2014, respectively. 

Sampling was done using the headspace collection technique with polyethylene terephthalate 

(PET) cooking bags (25 x 38 cm, Rainbow) for shoot and rhizosphere soil. Samples from empty 

PET bag were also collected to serve as a blank sample for shoot VOC data, whereas pot 

containing soil only and an empty pot (no soil + no seedling in it) served as blank samples for 

rhizosphere VOC data.  

Pre-heated PET bags (pre-heating at 120 oC for 1 hour in order to remove impurities) were used 

for the sampling. The shoots or the tube opening (28 mm in diameter) to the rhizosphere were 

covered with the PET bags, and air filtered through charcoal and MnO2 scrubber was passed into 

the input line at a flow rate of 400 ml/min (as calibrated with a Buck soap bubble calibrator) 

-10

-5

0

5

10

15

0 50 100 200 400 601 800 1 000 1 200 1 500 1 700 2 000

C
O

2
µ

m
o

l 
m

-2
 s

-1

PAR

Pn light curve



25 
 

 

through an opening in the bag that was fastened and tightened to prevent introduction of 

impurities. The purified air flowed for 10 minutes before each sampling to allow for flushing of 

the sampling bag. After flushing, VOCs were collected into sampling tubes (filled with Tenax 

TA and Carbopack B adsorbents) via an input line at a flow rate of 200 ml/min. Sampling time 

for shoots lasted 10 minutes and 1 hour for the rhizosphere soil. The sampling was done without 

removing the plants or pots from the chambers. Air temperature and humidity inside the bag was 

monitored during the sampling with button-size data loggers. The sampling tubes were sealed 

and stored at +4 o C in a refrigerator until GC-MS analysis.  

The sampling tubes containing the VOC samples were analyzed with a gas chromatography – 

mass spectrophotometry (GC – MS) (Hewlett-Packard GC 6890, MSD 5973). The compounds 

were desorbed into a thermal desorption unit (Perkin-Elmer ATD 400 Automatic Thermal 

Desorption system) for 10 minutes at 250 oC and injected into a HP-5 capillary column (50 m 

long x 0.2 mm internal diameter x 0.33 µm film thickness), with helium used as  the carrier gas.  

The temperature program sequence was 50 oC for 1 min, followed by increases of 5 oC per 

minute to 210 oC and 20 oC per minute to 250 oC with a final hold time of 250 oC for 1.5 min. 

The fragmented compounds were ionized in the ionization chamber, and the resulting VOCs 

identified by comparing their mass spectra against those in the Wiley library. The compounds 

were then quantified by comparing their peak areas and retention time with the available 

reference compounds used as standards. A set of Terpenoid and GLV (Green leaf volatile) 

compounds was used as standard and analyzed similarly with the samples. The data from the 

GC-MS analysis were then run on a macro in Excel to ease the analysis. Volatile organic 

compounds with identification certainty of 70% or more and that occurred in at least 5 samples 

per one sampling (i.e. 48 samples) were taken into account in further data analysis. 

Alpha pinene (from the Terpenoid standard) was used as reference to calculate the 

concentrations of terpenes while cis-3-hexen-1-ol (from the GLV standard) was used as 

reference for other compounds. This is based on the assumption that all compounds have similar 

response to the standard compounds. The emission rates were then related to the needle area/soil 

surface area using the formula: 

E = 
(𝐶𝑜𝑢𝑡−  𝐶𝑖𝑛 )𝐹

𝑛𝑒𝑒𝑑𝑙𝑒 𝑜𝑟 𝑠𝑜𝑖𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
 𝑥 60 𝑚𝑖𝑛 
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E = emission rate 

Cout = Concentration of VOC in the sampled air per liter (total sampled volume was 2 L for 

shoots and 12 L for rhizosphere) 

Cin = Concentration of VOCs in incoming air (assumed 0) 

F = Inflow of purified air, 0.4 L/min 

Shoot lengths and needle number and length were measured at the end of each sampling and 

used in calculating the VOC emission per needle surface area. The needle area was then 

calculated for old and new shoot using the needle length and needle number and using Flower 

Ellis and Olsson (1993) formula (see above Pn needle area calculation), but now for whole shoot 

length enclosed in the bag. 

The compounds found from blank samples were analyzed and quantified similarly as those in 

actual samples. If any of the compounds identified in the empty bag or pot appeared in less than 

three samples, the quantity emitted from it was then subtracted from that of the particular 

compound emitted in any of the other samples. The rhizosphere emission rate was corrected 

using the area of the soil collars (615,83 mm2). 

 

4.4. STATISTICAL TESTING 

IBM SPSS Statistics 21 was used for the statistical analysis of the data. The linear mixed model 

ANOVA (LMM ANOVA) analysis was used to test for the main and interaction effects of 

warming and N addition on the gas exchange and warming, N addition and herbivory effects on  

the above- and below-ground VOC emissions of the Scots pine seedlings.  In gas exchange 

design, tree identity nested within chamber was used as a random factor, whereas in VOC 

design, only chamber identity was used as a random factor. Though herbivory treatment was not 

performed until in June-July 2014, May 2014 data was used as an initial VOC emission level 

data for both H+ and H- seedlings, and therefore May measurement was included in the linear 

mixed model analysis of variance with the other dates. Spearman’s non-parametric correlation 

test was then used to check the relationships between gas exchange and quantity of VOCs 

emitted from the shoots and rhizosphere. For the correlation test, Pn, Gs, and all VOC (shoot and 
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rhizosphere VOCs) data from the same measurement dates were tested together to get the overall 

correlation pattern, and then split across time (i.e. May, July and September) to check for 

correlations at different time points. Results were considered statistically significant when p ≤ 

0.05, and marginally statistically significant when p ≤ 0.1. 
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5. RESULTS 

5.1 ABOVE-GROUND VOCs 

Twenty-six (26) compounds were emitted from the shoots, 14 of these being monoterpenes 

(MNTs) and 11 other volatile organic compounds (OVOCs), while there was only one 

sesquiterpene (SQT) (Tables 3 and 5). Compounds such as α-pinene, δ-3-carene, limonene, 

camphene and myrcene were the most abundant of the MNTs emitted. α-pinene accounted for 

almost 80 % of the MNTs emitted from the shoots. Nonanal, styrene, benzenemethyl, n-decanal 

and acetic acid were the most abundant of the OVOCs emitted from the shoots, accounting for 

over 90 % of the OVOCs. The emissions of MNTs, SQTs and OVOCs generally and 

significantly reduced (Table 4) as the experiment progressed, as they were highest in May and 

lowest in September (Figs 4-6). 
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Table 3. Individual MNT and SQT compound emissions (ng cm-2 h-1) measured from the shoots of Scots pine seedlings grown in different 

treatments (data not statistically tested). C = Control (i.e. ambient temperature, no N addition and no herbivory), N = Nitrogen treatment, H = 

Herbivory treatment, T = Temperature treatment, NH = Nitrogen + Herbivory treatment, TN = Temperature + Nitrogen treatment, TH = 

Temperature + Herbivory treatment, TNH = Temperature + Nitrogen + Herbivory treatment. Values are means±SEs of compounds averaged over 

three measurement occasions (May, July and September 2014). All other compounds are MNTs except b-caryophyllene. 

VOC 

emissions (ng 

cm2 h-1) 

C N H T NH TN TH TNH 

α - pinene 10.39±4,76 12.46±3,62 5.93±4,21 101.76±79,43 20.53±10,84 35.95±17,26 7.00±2,71 48.41±33,95 

β-pinene 0.02±0,02 0.02±0,02 0.01±0,01 0.47±0,36 0.48±0,48 0.59±0,44 0.05±0,05 0.61±0,38 

δ-3-Carene 1.50±0,97 3.32±1,56 8.05±6,89 62.69±58,70 2.91±2,52 2.78±1,30 0.87±0,54 1016.96±1016,30 

Camphene 0.29±0,11 0.53±0,19 0.31±0,12 2.56±1,15 1.18±0,56 2.29±1,07 1.69±1,50 10.78±9,03 

Sabinene 0.12±0,07 0.20±0,06 0.22±0,12 1.07±0,71 0.21±0,11 0.32±0,16 1.14±1,13 51.08±50,40 

Tricyclene 0.00±0,00 0.06±0,05 0.03±0,03 0.27±0,20 0.16±0,14 0.37±0,27 0.51±0,49 0.11±0,11 

Myrcene 0.25±0,11 0.27±0,10 0.39±0,30 3.23±2,51 0.30±0,16 0.57±0,28 3.43±3,37 56.70±56,69 

Limonene 0.46±0,26 0.23±0,08 0.32±0,17 1.57±0,77 1.30±0,77 0.59±0,20 1.86±1,48 0.20±0,13 

Trans-β-

ocimene 
0.04±0,03 0.04±0,02 0.22±0,22 0.40±0,13 0.33±0,27 0.92±0,57 0.00±0,00 12.00±11,64 

ȣ-terpinene 0.02±0,01 0.03±0,01 0.11±0,09 0.59±0,51 0.18±0,08 0.09±0,03 0.68±0,57 9.39±9,16 

Terpinolene 0.01±0,01 0.02±0,01 0.03±0,02 0.16±0,13 0.05±0,03 0.15±0,11 0.00±0,00 0.37±0,23 

1,8-Cineole 0.00±0,00 0.00±0,00 0.00±0,00 0.02±0,01 0.00±0,00 0.00±0,00 0.00±0,00 0.03±0,02 

α-Terpinolene 0.13±0,10 0.28±0,14 0.79±0,70 0.49±0,26 0.15±0,15 0.27±0,14 4.34±4,34 0.18±0,18 

α-phellandrene 0.00±0,00 0.00±0,00 0.02±0,02 0.20±0,17 0.05±0,05 0.05±0,03 0.23±0,23 1.11±1,05 

Total MNT 13.23±5,36 17.46±5,26 16.43±12,67 175.49±143,62 27.82±12,59 44.93±19,17 21.80±14,66 1207.92±1187,70 

 

β-

caryophyllene 
0.0002±0,0002 0.003±0,002 0.020±0,020 0.091±0,060 0.090±0,084 0.162±0,068 0.000±0,000 0.609±0,044 
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In May, there was no clear N or T effects, only TNH showed a huge variation (fig. 4a), but in 

general other H+ trees did not differ from each other clearly. Warming increased the emissions 

of MNT from the shoots in July especially, alone and in combination with N addition, whereas in 

September these effects were reduced. Herbivory reduced the warming effect in July without N 

addition (as seen in the TH column in fig 4b), but N addition effect was clearer (N caused an 

increase in MNTs) under herbivory. Since TNH treatment had again the highest bar in July after 

the herbivory experiment, it seems that herbivory did not modify this interaction, but these trees 

just had a similar response before and after the herbivory experiment. In September, the nitrogen 

addition and herbivory in combination (NH trees) increased the MNT emissions. 

There was a marginally significant time x N interaction in shoot SQTs (Table 4). Thus, N effects 

on SQTS became clearer in September, as nitrogen addition either singly or in combination with 

herbivory and warming increased SQT emissions from the shoots (fig 5c).  
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Figures 4a-c. Monoterpene (MNT) emissions from the shoot of Scots pine seedlings based on the administered 

treatments, control (C), nitrogen addition (N), herbivory (H), elevated temperature (T), nitrogen and herbivory (NH), 

elevated temperature and nitrogen addition (TN), elevated temperature and herbivory (TH), and a combined 

treatment of elevated temperature, nitrogen and herbivory (TNH) in May, July and September 2014. Values are 

means±SEs (n = 3 per treatment). 
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Figures 5a-c. Sesquiterpene (SQT) emissions from the shoot of Scots pine seedlings based on the 

administered treatments, control (C), nitrogen addition (N), herbivory (H), elevated temperature (T), 

nitrogen and herbivory (NH), elevated temperature and nitrogen addition (TN), elevated temperature and 

herbivory (TH), and a combined treatment of elevated temperature, nitrogen and herbivory (TNH) in 

May, July and September 2014. Values are means±SEs (n = 3 per treatment). 
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Figure 6a-c. OVOC emissions from the shoots of Scots pine seedlings based on the administered 

treatments, control (C), nitrogen addition (N), herbivory (H), elevated temperature (T), nitrogen and 

herbivory (NH), elevated temperature and nitrogen addition (TN), elevated temperature and herbivory 

(TH), and a combined treatment of elevated temperature, nitrogen and herbivory (TNH) in May, July and 

September 2014. Values are means±SEs (n = 3 per treatment). 
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Table 4. The p-values for main effects and their interactions used in mixed linear model ANOVA 

analyses. Data is for VOCs (MNTs and OVOCs) emitted by the shoot and rhizosphere of Scots 

pine seedlings. The effect is considered statistically significant when p≤0.05 and marginally 

statistically significant when p≤0.1 (shown in bold). 

Factors 
Shoots Rhizosphere 

Total 

MNT 

Total 

SQT 

Total 

OVOC 

Total 

MNT 

Total 

OVOC 

T .236 .026 .578 .390 .849 

N .181 .025 .981 .421 .906 

H .201 .163 .013 .238 .375 

T x N .194 .069 .175 .465 .515 

T x H .213 .453 .489 .348 .302 

N x H .099 .070 .276 .371 .175 

T x N x H .103 .157 .133 .513 .678 

Time .044 .054 .000 .011 .000 

Time x T .066 .218 .687 .713 .565 

Time x N .189 .065 .992 .633 .354 

Time x H .195 .191 .000 .700 .033 

Time x T x N .193 .174 .114 .669 .783 

Time x T x H .202 .635 .759 .747 .751 

Time x N x H .075 .315 .442 .712 .188 

Time x T x N x H .073 .550 .173 .575 .541 

 

 

Herbivory without N addition reduced MNT and SQT emissions (figures 7a-b), but since this 

data also included the May measurements where herbivory was not actually yet affecting, the 

positive response to N and H in combination is probably due TNH tree response (highest MNT 

and SQT emissions occurring from these seedlings in May and July). A marginally statistically 

significant T x N interaction on SQTs, however, showed clearly that though both warming and N 

addition alone increased the SQT emissions, the effect was most pronounced when seedlings 

were exposed to both warming and N addition in combination (fig 8). 
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Figure 7a-b. Effect of herbivory and N addition interaction on the emissions of (a) SQT and (b) MNT 

from the shoots of Scots pine. Values are means ±SEs of three measurement occasions, n = 3 per 

treatment for each occasion. 

 

Figure 8. Effect of warming and nitrogen addition on SQT emissions from the shoots of Scots pine. 

Values are means ±SEs of three measurement occasions, n = 3 per treatment for each. 
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Table 5. Warming, N addition and herbivory effects on OVOC emissions (ng cm2 h-1) measured from the shoots of Scots pine seedlings. C = 

Control (i.e. ambient temperature, no N addition and no herbivory), N = Nitrogen treatment, H = Herbivory treatment, T = Temperature treatment, 

NH = Nitrogen + Herbivory treatment, TN = Temperature + Nitrogen treatment, TH = Temperature + Herbivory treatment, TNH = Temperature + 

Nitrogen + Herbivory treatment. Values are means±SEs of compounds averaged over three measurement occasions (May, July and September 

2014). 

VOC emissions (ng cm2 h-1) C N H T NH TN TH TNH 

Nonanal 2.60±0,94 1.57±0,63 1.42±0,91 2.61±0,79 1.35±1,10 1.34±0,45 3.62±2,55 3.69±3,69 

Styrene 1.53±0,92 0.16±0,06 2.09±1,99 0.88±0,41 1.79±1,69 0.42±0,24 1.25±0,79 0.13±0,13 

Benzenemethyl 0.47±0,43 0.07±0,02 0.00±0,00 0.05±0,02 0.04±0,03 0.08±0,02 0.08±0,06 0.23±0,17 

N-Decanal 0.29±0,10 0.20±0,08 0.07±0,07 0.36±0,14 0.20±0,17 0.22±0,09 0.32±0,18 0.43±0,19 

Acetic acid 0.17±0,09 0.43±0,27 0.05±0,02 0.40±0,29 0.05±0,02 0.34±0,22 0.16±0,07 0.30±0,12 

Benzene 0.16±0,05 0.13±0,04 0.05±0,03 0.16±0,05 0.10±0,05 0.12±0,04 0.12±0,06 0.05±0,03 

Hexanoicacid-2-ethyl 0.12±0,07 0.07±0,03 0.00±0,00 0.09±0,04 0.00±0,00 0.09±0,03 0.07±0,04 0.09±0,05 

Benzene-1-methyl-4,1-methylethyl 0.12±0,09 0.02±0,02 0.05±0,02 0.29±0,22 0.04±0,04 0.05±0,02 0.36±0,25 4.08±3,99 

Hexanal 0.08±0,04 0.01±0,01 0.10±0,05 0.06±0,03 0.03±0,03 0.04±0,02 0.02±0,02 0.05±0,05 

Benzene-1,2-dimethyl 0.05±0,03 0.02±0,01 0.01±0,01 0.04±0,03 0.00±0,00 0.04±0,02 0.03±0,03 0.06±0,06 

Nethyl-1,3-dithioisoindoline 0.00±0,00 0.00±0,00 0.00±0,00 0.00±0,00 9.22±7,33 0.00±0,00 7.20±7,20 0.01±0,01 

Total OVOC 5.59±1,92 2.70±0,93 3.82±2,20 4.94±1,49 12.83±8,90 2.73±0,66 13.25±9,11 9.11±7,99 

 



37 
 

 

Herbivory seedlings (H+ seedlings) had clearly highest OVOC emissions from the shoots of 

Scots pine when compared to other seedlings (Table 4). In May, before actual herbivory 

treatment, H+ seedlings had more than doubled OVOC emissions (fig 9a), but after herbivory in 

July and September, this trend was changed to opposite, and herbivory thus reduced the OVOC 

emissions when compared to seedlings without herbivory (fig 9b).  

 

  

Figure 9a, b: Effect of (a) herbivory feeding (all months combined) and (b) herbivory feeding, months 

separated, on emissions of OVOCs from the shoots of Scots pine.  

 

5.2. BELOW-GROUND VOC EMISSIONS 

From the rhizosphere, thirty-seven (37) compounds were identified after VOC analysis (Tables 8 

and 9), 4 monoterpenes (MNT) and 33 other volatile compounds (OVOC). α-Pinene, δ-3-Carene, 

limonene, and ȣ-terpinene were the monoterpenes identified, while nonanal, decanal, acetic acid, 

benzene, propanoic acid, and 1-hexanol-2-ethyl were the most abundant of the other VOCs 

emitted, jointly accounting for about 73% of the total OVOCs emitted. The number and quantity 

of OVOCs emitted was more than that of the MNTs (Tables 6 and 7), more volatile compounds 

being emitted in the first month than in other times (fig 10). The quantity of the OVOCs emitted 

significantly reduced with time (Table 4) while the quantity of MNT significantly reduced in 

July but increased again in September (fig 10).  
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Figure 10. Total amount of MNTs and OVOCs emitted from the rhizosphere of Scots pine 

seedlings in May, July and September 2014. 

 

There was only a statistically significant time and time x herbivory interaction on rhizosphere 

OVOCs in this study (Table 4). Herbivory seedlings had originally lower OVOC emissions in 

May, but after herbivory experiment OVOC emissions were increased significantly from the 

rhizosphere by about 85 mg m2 h-1 (~21 %) in July, the month of the herbivory experiment and 

also slightly increased OVOC emissions in September (fig 13). In MNT emissions no clear 

warming, N addition or herbivory effects were seen (Table 4, Figure 11a-c).
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Table 6. Warming, N addition and herbivory effects on MNT emissions (mg cm-2 h-1) measured from the rhizosphere of Scots pine seedlings. C = 

Control (i.e. ambient temperature, no N addition and no herbivory), N = Nitrogen treatment, H = Herbivory treatment, T = Temperature treatment, 

NH = Nitrogen + Herbivory treatment, TN = Temperature + Nitrogen treatment, TH = Temperature + Herbivory treatment, TNH = Temperature + 

Nitrogen + Herbivory treatment. Values are means±SEs of compounds averaged over three measurement occasions (May, July and September 

2014). 

 

VOCs Emissions 

(mg m2 h-1) 
C N H T NH TN TH TNH 

α - pinene 12.31±4,15 9.68±3,88 5.40±4,20 46.14±28,60 8.73±5,80 14.31±4,81 10.11±6,60 8.92±5,93 

Limonene 3.27±1,20 2.64±1,11 0.00±0,00 3.13±1,42 0.00±0,00 2.35±1,12 2.75±1,85 2.76±1,83 

δ-3-Carene 0.58±0,33 0.46±0,26 5.91±4,07 1.40±0,81 2.74±2,13 1.41±0,86 0.00±0,00 1.34±0,88 

ȣ-terpinene 0.31±0,31 0.32±0,32 0.00±0,00 1.03±0,73 1.61±1,61 1.04±0,76 0.00±0,00 0.00±0,00 

Total MNT 16.47±5,65 13.11±5,24 11.31±7,56 51.70±28,64 13.08±8,68 19.11±6,59 12.86±8,45 13.02±8,64 
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Figures 11a-c: Mean (±SE, n = 3) of monoterpene (MNT) May, July and September emissions from the rhizosphere 

of Scots pine seedlings based on the administered treatments, control (C), nitrogen addition (N), herbivory (H), 

elevated temperature (T), nitrogen and herbivory (NH), elevated temperature and nitrogen addition (TN), elevated 

temperature and herbivory (TH), and a combined treatment of elevated temperature, nitrogen and herbivory (TNH) 

in May, July and September 2014. Values are means±SEs (n = 3 per treatment).  
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Figure 12a-c. Mean (±SE, n = 3) May, July and September OVOC emissions from the rhizosphere of Scots pine 

seedlings based on the administered treatments, control (C), nitrogen addition (N), herbivory (H), elevated 

temperature (T), nitrogen and herbivory (NH), elevated temperature and nitrogen addition (TN), elevated 

temperature and herbivory (TH), and a combined treatment of elevated temperature, nitrogen and herbivory (TNH) 

over the three samplings. 
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Table 7. OVOC emissions (mg cm-2 h-1) measured from the rhizosphere of Scots pine seedlings grown in different treatments (data not statistically 

tested).  C = Control (i.e. ambient temperature, no N addition and no herbivory), N = Nitrogen treatment, H = Herbivory treatment, T = 

Temperature treatment, NH = Nitrogen + Herbivory treatment, TN = Temperature + Nitrogen treatment, TH = Temperature + Herbivory 

treatment, TNH = Temperature + Nitrogen + Herbivory treatment. Values are means±SEs of compounds averaged over three measurement 

occasions (May, July and September 2014). 

VOCs Emissions (mgm2h-1) C N H T NH TN TH TNH 

Nonanal 134.03±26,3 156.56±41,1 232.78±112,1 141.95±26,7 128.15±44,3 234.04±48,4 163.36±44,1 116.94±38,5 

Decanal 22.14±3,82 28.21±5,65 38.03±19,53 26.42±3,11 23.74±7,15 31.84±5,74 21.40±6,38 29.76±6,39 

Styrene 18.65±6,06 29.69±16,32 13.22±11,31 18.01±5,92 15.35±10,21 5.59±1,86 14.24±8,75 5.82±3,23 

Acetic acid 13.03±4,66 10.32±3,15 15.19±7,11 8.59±2,93 14.79±5,47 20.10±4,74 9.11±6,54 12.55±7,10 

1,2-

benzenedicarboxylicaciddiethylester 
12.61±5,38 5.14±2,51 8.26±7,40 10.61±3,75 0.98±0,98 8.58±3,90 7.34±7,34 18.00±11,96 

1-hexanol-2-ethyl 8.48±1,82 5.98±1,54 12.60±10,70 14.18±2,52 1.45±0,96 8.41±2,76 9.12±4,23 6.22±2,87 

Benzene 8.39±1,59 6.20±1,84 5.55±2,02 6.69±2,05 5.61±2,29 7.82±2,19 2.63±1,08 12.75±3,75 

Propanoicacid-2-methyl-3-hydroxy-

2,4,4-trimethylpentylester 
7.11±3,01 4.67±2,24 1.91±1,91 6.85±2,29 6.20±2,64 5.42±2,60 11.97±7,48 1.07±1,07 

Benzenemethyl 5.86±1,89 8.47±2,20 5.90±3,50 13.64±4,41 6.39±2,57 8.59±2,67 7.29±3,96 8.79±4,66 

Benzene-1,3-dimethyl 5.73±1,72 4.79±1,51 3.36±2,74 6.48±2,02 5.46±3,62 3.67±1,56 0.99±0,99 7.33±3,98 

ethane-1,1,1-trichloro 5.32±2,83 13.81±6,37 3.47±2,01 10.80±4,28 14.85±10,89 10.52±4,39 14.52±13,14 11.14±6,55 

1-Propanol-2-methyl 5.26±3,13 6.84±3,46 1.33±1,33 6.65±3,88 3.19±3,19 5.72±2,59 2.07±2,07 5.19±3,45 

2,5-cyclohexadiene-1,4-dione-2,6-

bis-1,1-dimethylethyl 
5.17±1,58 5.98±1,42 2.88±1,99 8.17±2,25 5.70±2,26 5.19±1,54 3.63±1,84 6.29±3,92 

Benzaldehyde 4.99±1,71 4.82±2,09 9.85±5,63 7.25±2,28 2.46±1,72 5.14±1,87 1.92±1,92 5.05±3,34 
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VOCs Emissions (mgm2h-1) C N H T NH TN TH TNH 

Isobutylalcohol 4.55±3,72 6.39±5,48 0.00±0,00 0.58±0,58 0.00±0,00 1.34±0,92 0.00±0,00 0.00±0,00 

Hexanal 4.18±1,23 4.98±1,42 3.93±3,00 5.04±1,64 2.97±1,63 5.93±1,89 1.71±1,71 3.50±1,99 

Phenol 4.15±1,19 4.04±1,30 3.52±2,48 5.69±1,16 2.27±1,78 3.30±1,29 3.94±2,13 3.01±1,96 

Tridecane 3.85±1,78 2.94±1,21 0.96±0,96 2.79±1,35 1.33±1,01 4.93±1,85 1.35±1,35 1.02±1,02 

Benzeneethyl 3.68±1,01 4.38±2,17 0.69±0,69 4.70±1,13 3.10±1,79 1.54±0,58 2.73±1,31 2.26±1,24 

Octanal 3.64±1,17 5.47±1,47 4.75±3,92 3.51±1,67 4.78±2,00 5.38±2,34 5.44±2,40 1.80±1,21 

Benzene-1,4-dimethyl 2.72±1,11 5.79±2,86 2.60±1,92 4.25±1,43 7.88±7,21 6.08±2,09 1.88±1,44 2.19±1,68 

Quinoline-1,2-dihydro-2,2,4-

trimethyl 
2.07±0,94 1.93±0,75 1.34±0,89 2.12±0,84 0.93±0,93 2.02±0,80 1.14±0,88 1.73±1,33 

Benzene-1,2-dimethyl 0.96±0,41 0.83±0,49 1.24±1,24 3.08±1,28 1.61±1,61 3.34±1,10 2.66±2,02 1.00±0,67 

3-heptanone 0.79±0,48 0.57±0,44 0.68±0,68 0.32±0,32 0.00±0,00 1.07±0,44 0.00±0,00 0.60±0,60 

Naphthalene-1,3-dimethyl 0.76±0,76 0.09±0,09 0.09±0,09 0.57±0,39 0.00±0,00 0.66±0,66 0.00±0,00 0.00±0,00 

1-butanol 0.62±0,46 1.43±0,69 0.07±0,07 1.69±0,80 0.00±0,00 0.80±0,55 0.91±0,91 0.00±0,00 

Piperidine 0.61±0,42 0.43±0,43 0.00±0,00 0.36±0,36 0.00±0,00 1.51±0,92 0.00±0,00 1.70±1,70 

1,3,5,7-cyclooctatetraene 0.50±0,37 3.55±1,66 4.17±2,32 2.77±1,02 1.44±1,03 2.48±1,42 0.00±0,00 1.82±1,82 

2-pentanone-4-methyl 0.40±0,40 0.90±0,59 0.65±0,65 0.85±0,59 1.20±0,81 0.95±0,53 0.00±0,00 1.55±1,03 

Propanoicacid-2-methyl-2-ethyl-3-

hydroxyhexylester 
0.32±0,28 1.06±0,60 0.00±0,00 0.72±0,52 0.00±0,00 0.37±0,37 0.33±0,33 1.17±1,17 

5,9-undecadien-2-one-6,10-dimethyl 0.31±0,31 1.92±1,16 0.76±0,76 1.23±0,85 0.00±0,00 1.56±0,90 0.00±0,00 1.04±1,04 

Heptanal 0.15±0,15 0.20±0,20 1.63±1,11 0.95±0,52 0.00±0,00 1.76±0,85 0.00±0,00 0.00±0,00 

1-nonene 0.00±0,00 0.00±0,00 0.00±0,00 0.00±0,00 0.00±0,00 1.30±0,71 0.00±0,00 0.93±0,93 

Total OVOC 291.02±40,9 338.40±64,8 381.42±164,3 327.50±41,6 261.83±63,3 406.95±73,7 291.69±76,4 272.22±59,5 
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Figure 13. Time x herbivory feeding interaction effect on the emission of OVOCs from the rhizosphere of 

Scots pine. Values are means±SEs (n = 9). 

  

0

100

200

300

400

500

600

May July September

E
m

is
si

o
n

 (
m

g
 m

2
 h

-1
)

No H H



45 
 

 

5.3. GAS EXCHANGE 

5.3.1. Photosynthesis 

In general, the old shoots photosynthesized more than the new shoots (fig 14). The 

photosynthesis rate in both the old and new shoots increased gradually with time until August 

and dropped again in September (fig 15).  However, nitrogen addition significantly (time x N 

interaction, p = 0.005, Table 8) increased photosynthesis rates of the old shoots in the early 

stages of the experiment (May and June) but then its effect diminished in July, and ultimately in 

August and September N addition decreased Pn rates in old shoots (fig 16). In contrast to old 

shoots, warming alone and in combination with N addition (T and TN) increased photosynthesis 

in new shoots when compared to C and N treatments (p = 0.017 for warming main effect, Table 

7), treatment effects on new shoot Pn being similar over time (Table 8; Pn range 1,33 – 2,18 CO2 

µmol m-2 s-1 in May – September 2014 period). 

 

 

Figure 14. Overall photosynthesis rates of the shoots of Scots pine in different warming and N levels. 

Treatments: control (C), nitrogen addition (N), elevated temperature (T), elevated temperature and 

nitrogen addition (TN). Values are means ±SEs of five measurement occasions, n = 3 per treatment for 

each occasion (n = 15 per treatment in total).  
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Figure 15. Overall photosynthesis rate of the old and new shoot of Scots pine seedlings over time. Values 

are means ±SEs of five measurement occasions, n = 3 per treatment for each occasion (n = 15 per 

treatment in total) 

 

Figure 16. Effects of nitrogen addition over time on the photosynthesis rate of old shoot of Scots pine 

seedlings. Values are means ±SEs when C and T trees are combined (no N) and when N and TN trees are 

combined (30 kg N ha-1 a-1 added), n = 6 at each N level. 

  

0

1

2

3

4

5

May June July August September

P
h

o
to

sy
n

th
es

is
 (

C
O

2
 μ

m
o

l 
m

−
2

s−
1
)

Total Old shoot Total New shoot

0

1

2

3

4

5

6

May June July August September

P
h

o
to

sy
n

th
es

is
 (

C
O

2
 μ

m
o

l 
m

−
2

s−
1
)

Old shoot Time x N interaction

No N 30kg N



47 
 

 

Table 8. P-values of different treatment levels on gas exchange, photosynthesis (Pn) and stomatal 

conductance (Gs) from the new and old shoots of Scots pine seedlings. P-value is considered to 

be statistically significant when p≤0.05 and marginally statistically significant when p≤0.1. 

 
p-value 

Factors 

Old shoot New shoot 

Pn Gs Pn Gs 

T 0,782 0,305 0,017 0,023 

N 0,963 0,913 0,495 0,021 

T x N 0,503 0,689 0,149 0,031 

Time 0,000 0,000 0,000 0,002 

Time x T 0,774 0,027 0,639 0,242 

Time x N 0,005 0,221 0,953 0,175 

Time xT x N 0,796 0,521 0,775 0,214 

 

 

5.3.2. Stomatal conductance 

Generally, just as with the photosynthesis, the old shoot had higher stomatal conductance rate 

than the new shoot (fig 17). The effect of warming on the rate of stomatal conductance in the old 

shoot varied over time significantly (time x T, p = 0,027). Thus, in May, June and September, 

stomatal conductance was similar between the warming and non-warmed condition, but in July 

and August, stomatal conductance was higher in the Scots pine seedlings under the ambient 

temperature exposure than in warming treatment (fig 18).  

In the new shoot, warming and nitrogen addition increased the stomatal conductance rate (Table 

8, Figs 17), however, the combined TN treatment had a synergy effect, as increase in the rate of 

stomatal conductance was more than the sum of the individual treatment effect.  
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Figure 17. Effect of warming and N addition on the stomatal conductance  of the shoots of Scots pine. 

Treatments: control (C), nitrogen addition (N), elevated temperature (T), elevated temperature and 

nitrogen addition (TN). Values are means ±SEs of five measurement occasions, n = 3 per treatment for 

each occasion (n = 15 per treatment in total).  

 

 

Figures 18. The temperature effect over time on the stomatal conductance rate of the old shoot of Scots 

pine seedlings over time. 
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quantity of OVOCs emitted from the old shoot. In the new shoot, there was also a negative 

correlation between the photosynthesis rate and the quantity of MNT emitted from the shoot 

(Table 9). There was also a negative correlation between the new shoot photosynthesis and 

stomatal conductance rate and the quantity of MNT emitted from the shoots and rhizosphere soil 

(Table 9). All of these negative correlations means that the quantities of MNT and OVOCs 

emitted increased as the photosynthesis and stomatal conductance reduced and vice versa.  

At the time point level, correlation test between the gas exchange and VOC emission showed a 

negative correlation between the new shoot stomatal conductance and shoot OVOC in September 

(Table 10) meaning that the emissions of OVOC from the shoots increased as the stomatal 

conductance in the new shoot reduced and vice versa. A positive correlation was instead found 

between the new shoot stomatal conductance and the quantity of SQT emitted in July (Table 10) 

meaning that the emission of SQT from the shoot increased as the stomatal conductance in the 

new shoot increased. 
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Table 9. Non-parametric correlation between gas exchange and quantity of emission of volatile 

organic compounds for the whole data (3 measurement times combined). **. Correlation is 

significant at the 0.01 level, * correlation is significant at the 0.05 level  

 

Shoot 

MNT 

Shoot 

OVOC 

Shoot 

SQT 

Rhizosphere 

MNT 

Rhizosphere 

OVOC 

Old Shoot Pn 
-.180 -.441** -.068 -.252 .103 

Old Shoot 

Gs 
-.189 -.460** -.021 -.283 .123 

New Shoot 

Pn 
-.380* -.577** -.052 -.522** .050 

New shoot 

Gs 
-.379* -.625** -.045 -.554** .024 

 

Table 10. Non-parametric correlation between gas exchange and quantity of emission of volatile 

organic compounds for the data at three different measurement times. **. Correlation is 

significant at the 0.01 level, *. Correlation is significant at the 0.05 level. There were no new 

shoot measurements done in May. 

Time 

Shoot 

MNT 

Shoot 

OVOC 

Shoot 

SQT 

Rhizosphere 

MNT 

Rhizosphere 

OVOC 

May Old Shoot 

Pn 
.497 .559 .477 .218 -.147 

Old Shoot 

Gs 
.503 .503 .450 .276 -.126 

July Old Shoot 

Pn 
-.387 -.322 -.430 .306 .133 

Old Shoot 

Gs 
-.556 -.441 -.570 .393 .063 

New Shoot 

Pn 
.028 .301 .360 -.480 .126 

New shoot 

Gs 
.261 .441 .640* -.393 -.084 

September Old Shoot 

Pn 
.084 -.417 -.306 -.131 -.231 

Old Shoot 

Gs 
.203 -.462 -.131 -.306 -.217 

New Shoot 

Pn 
-.161 -.137 .044 .306 -.070 

New shoot 

Gs 
-.371 -.585* -.306 -.393 -.161 
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6. DISCUSSION 

6.1. VOC EMISSIONS FROM SCOTS PINE SHOOTS 

The blend of MNTs emitted from the shoots in this study is also consistent with the findings of 

Tarvainen et al. (2005), Räisänen et al. (2009) and Aaltonen et al. (2010) who found that MNTs 

made up to 85 % of the total VOCs emitted from Scots pine grown in forests. Shao et al. (2001) 

also suggested that monoterpene emissions from Scots pine (Pinus sylvestris) can occur from 

storage pools as well as from processes that are linked to monoterpene biosynthesis, and that 

monoterpene emissions are influenced by photosynthetically active radiation. In this study, MNT 

made up 81 % of the total VOCs emitted from the shoot. The quantities of both the MNT and 

OVOC emitted significantly reduced with time, being highest in the first month, and gradually 

decreasing as the experiment progressed.  

 

Tarvainen et al. (2005) observed a seasonal cycle for monoterpene emissions of Scots pine 

grown in a boreal forest. This cycle shows temperature dependence: emission rates were very 

high in spring, dropped slightly lower in summer and then followed with a gradual decrease into 

autumn. This probably explains the considerable difference in the quantity of MNT and OVOCs 

emitted from the shoot, as MNTs can also be emitted from storage pools while the OVOCs are 

not. 

 

N addition enhanced the effect of herbivory feeding, increasing the MNTs emitted from the 

shoots. N addition also enhanced the effect of warming, forming a synergistic relationship and 

increasing the quantity of SQT emitted. This is consistent with the findings of Kivimäenpää et al. 

(manuscript) who observed that N addition enhanced the effect of warming and as much as 

quadrupled the quantity of VOCs emitted.  The increment in the emissions of OVOCs caused by 

herbivory suggests the possibility of most of the OVOCs being emitted in high quantities as an 

allelopathy response to the ‘shock’ of the herbivore attack (Holopainen and Gershenzon 2010). 

This suggests the possibility of an instantaneous emission of volatile compounds in response to 

environmental stressors.  
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6.2. VOC EMISSIONS FROM SCOTS PINE RHIZOSPHERE 

The number and quantity of MNTs emitted from the rhizosphere is very low when compared to 

those emitted from the shoots. This agrees with the findings of Asensio et al. (2008) where soil 

monoterpene emissions were very low when compared with foliar VOC emission rates. α-pinene 

was the most abundant MNT volatile compound from the shoot and the second most abundant 

from the rhizosphere, accounting for up to 69% of the monoterpenes emitted from the shoot and 

up to 56% of those from the rhizosphere. This comes close to the findings of Smolander et al. 

(2006), where α-pinene accounted for 65% of the total monoterpene concentration in pine and 

soils, while δ-3-carene and myrcene accounted for 12% and 9% of the monoterpenes 

respectively. In this study, δ-3-carene made up ~ 6% of the MNT emitted and no myrcene was 

found.  

 

In this study, the number and quantity of OVOCs emitted were higher in the first month than in 

other months. A possible explanation for the large number of volatiles found in the rhizosphere 

may be that roots are known to produce different VOCs than leaves (Erb et al. 2010) mainly 

because they respond differently to elicitors (Schmelz et al. 2009). Another possible reason for 

the high number of OVOCs emitted from the rhizosphere may be related to the role of soils as a 

sink and emitter of VOCs (Asensio et al. 2008). The numerous interactions present in soils, 

ranging from microbial activities, organic matter decomposition (Leff and Fierer 2008) and even 

root exudates (Seawald et al. 2010) can influence the type and quantity of VOCs emitted from 

the rhizosphere.  

 

Herbivory increased the quantity of OVOC emitted from the rhizosphere in July (the month of 

the herbivory experiment) suggesting that above-ground herbivore attack can induce the 

emissions of volatile compounds, even from the roots, to help protect plants from the herbivores. 

The mechanism behind this may, however, be complex and is not studied in this work in detail, 

given that the rhizosphere is a complex environment where several interactions occur. The 

qualitative changes of VOCs emitted from the rhizosphere after herbivory may also be supported 

by the findings of Musser et al. (2002) which suggested a relationship between the VOCs emitted 

from the injured plants and the attacking herbivore. The increment in OVOC emissions brought 

about by herbivory in July, but little effect on VOC emissions in September, suggests that the 
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plants have possibly re-adjusted their physiological processes to address the damage caused by 

the herbivore attack, thus increasing the variety and quantity of VOCs in that time and not much 

further than the period of attack. 

 

6.3. GAS EXCHANGE RESPONSES 

Generally, over time, photosynthesis and stomatal conductance rate increased until August and 

decreased in September, and the old shoots had a higher photosynthesis and stomatal 

conductance rate than new shoots. Warming (T) increased photosynthesis rate in the new shoots 

until July, which follows the findings of Pumpanen et al. (2012) that warming increased 

photosynthesis in Scots pine and other conifers. However, this increment in the rate of 

photosynthesis caused by warming gradually reduced beginning from August suggesting that it 

follows a seasonal cycle.  

Emission of most MNTs is known to be light dependent (Yuan et al. 2009), and according to 

Komenda et al. (2003), photosynthetic light absorption rate significantly affects the emission of 

monoterpenes, especially α-pinene. However, the mechanism of interaction of PAR with VOC 

emission rates is yet to be fully understood. In this study, June and July had the longest PAR 

exposure hours and although the first month, May, had the highest emission rate of VOCs both 

from the rhizosphere and shoots, possibly due to the initial adjustment of the Scots pine saplings 

to the stressors/treatments applied, the next highest emissions came in July the month with the 

second longest PAR duration, corroborating the likelihood of a relationship between PAR and 

the emission rate of volatile compounds.  

 

The effects of nitrogen addition on the photosynthesis rate in the Scots pine needles followed a 

time pattern in old shoots; its effect was prominent in the early stages of the experiment, 

increasing photosynthesis rate in the old shoot till July and then waned with time. This can be 

explained by the reallocation of the nitrogen to meet the nutritional requirement of nitrogen 

especially by the old shoot. The variations in the effect of nitrogen addition on photosynthesis 

was also reported by Bell et al. (2011) who noted that plants show different responses such as 

increasing and decreasing rates of photosynthesis and stomatal conductance to different levels of 

nitrogen addition both singly and in combination with other treatments, and that such effect has 
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some level of dependence on the form in which the nitrogen is taken up from the soil to the plant. 

The synergistic interaction between warming and N addition in the new shoots, which also 

increased stomatal conductance, suggests that the Scots pine needles become more active when 

N is well available at warm temperatures.  

This study also found a negative correlation between gas exchange and VOC emission, with 

VOC emissions increasing as the photosynthesis/stomatal conductance reduces. A possible 

explanation for this could be that plants emit VOCs passively even when the stomata are closed 

and Pn is low. 
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7. CONCLUSION 

 According to the present study pine weevil herbivory on Scots pine bark can elicit the emissions 

of OVOCs from the rhizosphere as seen in the increased quantity of OVOC emitted from the 

rhizosphere in July, the month of the herbivory experiment. Furthermore, nitrogen addition can 

enhance the effects of warming on shoot SQT, and vice versa, but moderate warming (+2 °C 

increase) effects on shoot MNTs or OVOCs were not seen and also N effects on MNTs was 

variable over time. The emission of volatile organic compounds from shoots and rhizosphere soil 

increased while foliar gas exchange reduced suggesting the possibility of passive emissions of 

VOCs. Current results nonetheless indicate that some warming and N interactions can occur in 

VOC emissions, and that also herbivory pressure can modify N response of VOCs in conditions 

where N availability is increased.  
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