Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to $1\alpha,25$-dihydroxyvitamin D$_3$
ABSTRACT

Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1α,25-dihydroxyvitamin D₃

UNIVERSITY OF KUOPIO, The Faculty of Natural and Environmental Sciences,
Curriculum of Biosciences
RYYNÄNEN Jussi Pekka
Thesis for Master of Science degree
Supervisors
Prof. Carsten Carlberg, Ph.D.
Marjo Malinen, Ph.D.
December 2009

Keywords: Gene regulation, IGFBP3, 1α,25(OH)₂D₃, Gemini, VDRE, chromatin

The gene insulin-like growth factor binding protein 3 (IGFBP3) has been previously shown to be a primary vitamin D₃ receptor (VDR) target containing three vitamin D₃ response elements (VDREs) in its promoter. It is up-regulated by the natural VDR ligand, 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃), and is also a mediator for 1α,25(OH)₂D₃-mediated growth inhibition. In this study, non-malignant MCF-10A human mammary cells showed cyclical IGFBP3 induction with 60 min periodicity after detailed time course stimulation with 1α,25(OH)₂D₃. Cycling of mRNA was the outcome from ligand-dependent VDR association to all VDREs and histone 4 acetylation of the proximal VDREs. Interestingly, these actions were not observed in response to treatment with the 1α,25(OH)₂D₃ analog Gemini, where IGFBP3 mRNA expression was linear and more prominent. To study this process in more detail, gene expression profiles of every of the 11 histone deacetylase (HDAC) genes were measured after stimulation with both ligands. HDACs are important mediators for chromatin condensation and transcriptional repression and therefore they also play a role in transcriptional cycling. Interestingly, only the HDAC4 and HDAC6 genes responded to 1α,25(OH)₂D₃ treatment, while none of them to Gemini. In addition, transcriptional cycling was eliminated after combined mRNA silencing of both HDAC4 and HDAC6. Furthermore, HDAC4 and HDAC6 showed cyclical association with VDREs in response to VDR ligands. In conclusion, 1α,25(OH)₂D₃ regulates IGFBP3 expression in a cyclical fashion with cyclical recruitment of VDR, HDAC4 and HDAC6 to VDREs on IGFBP3 promoter. Because Gemini has stronger interactions with VDR, it does not induce transcriptional cycling, which results in stable IGFBP3 mRNA induction.
ACKNOWLEDGEMENTS

I am grateful to many people for the support I received while writing this thesis. This thesis was done during 2008 and 2009 at the University of Kuopio in the Department of Biosciences at the Biochemistry unit in the research group of Prof. Carsten Carlberg. I would like to thank my supervisors Dr. Marjo Malinen and Prof. Carsten Carlberg for invaluable advise and professional guidance. I would like to thank Docent Sami Väisänen for collaborating in this project. Special acknowledgement belongs to Maija for the technical support and cell culturing. A number of other people in our research group have supported me during this project and I am grateful to all of them for creating such a nice atmosphere in the lab and keeping up the team spirit. I would also like to thank my friends for all the social events we had, which kept studies and leisure time in a good balance.

Finally, I would like to thank Eveliina for her encouragement and understanding during the whole period of my thesis. I will never forget the endless support and help.

Kuopio 11.12.2009

Jussi Ryynänen
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α,25(OH)(_2)D(_3)</td>
<td>1α,25-dihydroxyvitamin D(_3)</td>
</tr>
<tr>
<td>25(OH)D(_3)</td>
<td>25-hydroxyvitamin D(_3)</td>
</tr>
<tr>
<td>ALS</td>
<td>acid-labile subunit</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immuno-precipitation</td>
</tr>
<tr>
<td>CoA</td>
<td>co-activator</td>
</tr>
<tr>
<td>CoR</td>
<td>co-repressor</td>
</tr>
<tr>
<td>CYP</td>
<td>cytochrome P450</td>
</tr>
<tr>
<td>CYP24A1</td>
<td>cytochrome P450, family 24, subfamily A, polypeptide 1 gene</td>
</tr>
<tr>
<td>CYP27A1</td>
<td>cytochrome P450, family 27, subfamily A, polypeptide 1 gene</td>
</tr>
<tr>
<td>CYP27B1</td>
<td>cytochrome P450, family 27, subfamily B, polypeptide 1 gene</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>DBP</td>
<td>vitamin D-binding protein</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DR</td>
<td>direct repeat</td>
</tr>
<tr>
<td>ER</td>
<td>everted repeat</td>
</tr>
<tr>
<td>FAM</td>
<td>6-carboxyfluorescein</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>acH4</td>
<td>acetylated histone H4</td>
</tr>
<tr>
<td>HAT</td>
<td>histone acetyltransferase</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IGF-I</td>
<td>insulin-like growth factor-I</td>
</tr>
<tr>
<td>IGF-II</td>
<td>insulin-like growth factor-II</td>
</tr>
<tr>
<td>IGF-IR</td>
<td>type I insulin-like growth factor receptor</td>
</tr>
<tr>
<td>IGF-IIR</td>
<td>type II insulin-like growth factor receptor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>IR</td>
<td>inverted repeat</td>
</tr>
<tr>
<td>LBD</td>
<td>ligand-binding domain</td>
</tr>
<tr>
<td>LBP</td>
<td>ligand-binding pocket</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
</tbody>
</table>
NR nuclear receptor
PBS phosphate buffered saline
PTH parathyroid hormone
RA rheumatoid arthritis
pRb retinoblastoma protein
RE response element
RPLP0 ribosomal protein, large, P0
RT-qPCR real-time quantitative PCR
RXR retinoid X receptor
siRNA small inhibitory RNA
Th1 T helper type I
Th2 T helper type II
TSS transcription start site
TGF-β transforming growth factor-β
VDR vitamin D₃ receptor
VDRE vitamin D₃ response element
TABLE OF CONTENTS

ABSTRACT ... 2
ACKNOWLEDGEMENTS ... 3
ABBREVIATIONS ... 4
TABLE OF CONTENTS .. 6
1 INTRODUCTION ... 8
2 LITERATURE REVIEW ... 10
 2.1 1α,25(OH)₂D₃ .. 10
 2.1.1 Vitamin D₃ metabolism .. 10
 2.1.2 1α,25(OH)₂D₃ actions on bone ... 12
 2.1.3 Anti-tumor actions of 1α,25(OH)₂D₃ .. 12
 2.1.4 1α,25(OH)₂D₃ actions on immunity .. 14
 2.2 Vitamin D receptor .. 15
 2.2.1 Overview of nuclear receptors ... 15
 2.2.2 VDR function ... 15
 2.2.3 1α,25(OH)₂D₃ analogs as VDR ligands .. 17
 2.3 Chromatin structure ... 18
 2.3.1 Histone acetylation and deacetylation ... 21
 2.4 IGFBP3 ... 23
 2.4.1 IGFBP3 as a modulator of IGF signaling .. 23
 2.4.2 IGF-independent actions of IGFBP3 .. 24
3 AIMS OF THE STUDY ... 26
4 MATERIALS AND METHODS ... 27
 4.1 Cell culture ... 27
 4.2 RNA extraction and cDNA synthesis .. 27
 4.3 siRNA inhibition .. 28
 4.4 PCR-primer design ... 29
 4.5 RT-qPCR .. 31
 4.6 ChIP assay ... 31
 4.6.1 RT-qPCR of chromatin templates ... 33
5 RESULTS.. 35
5.1 Cyclical induction of IGFBP3 mRNA expression by 1α,25(OH)₂D₃ 35
5.2 VDR binding to the IGFBP3 promoter in response to 1α,25(OH)₂D₃ and Gemini 35
5.3 Chromatin acetylation in response to 1α,25(OH)₂D₃ and Gemini 38
5.4 HDACs mRNA expression in response to 1α,25(OH)₂D₃ and Gemini 39
5.5 Silencing of HDAC4 and HDAC6 mRNA expression by siRNA 43
5.6 HDAC4 and HDAC6 association with VDREs on IGFBP3 promoter 44
6 DISCUSSION.. 47
7 REFERENCES .. 50
1 INTRODUCTION

The pro-hormone vitamin D$_3$ is produced in skin or taken up from diet. It is converted in the liver and the kidneys to 1α,25-dihydroxyvitamin D$_3$ (1α,25(OH)$_2$D$_3$), which is the biologically active form of vitamin D$_3$ (Haussler et al., 1998). The main role of 1α,25(OH)$_2$D$_3$ is in regulation of calcium and phosphate homeostasis and bone mineralization, but it also has important pro-apoptotic and anti-proliferative effects in regulation of cell growth (DeLuca, 2004). 1α,25(OH)$_2$D$_3$ mediates its effects on gene regulation by activating the vitamin D$_3$ receptor (VDR) (Sutton & MacDonald, 2003). Circulating 1α,25(OH)$_2$D$_3$ levels are tightly regulated, including the regulation of 1α,25(OH)$_2$D$_3$ synthesis and feedback-mediated degradation (Haussler et al., 1998).

VDR is a member of the nuclear receptor (NR) superfamily and is the only mediator for genomic actions of 1α,25(OH)$_2$D$_3$. Binding of 1α,25(OH)$_2$D$_3$ activates VDR by inducing a conformational change of its ligand-binding domain (LBD). Ligand-activated VDR functions as a heterodimer with retinoid X receptor (RXR) and acts as a direct regulator of target gene expression by binding to vitamin D$_3$ response elements (VDREs) within the regulatory region of VDR target genes (Toell et al., 2000). During transcriptional activation, ligand-activated VDR recruits co-activators (CoAs). While unliganded, VDR associates with co-repressors (CoRs) and histone deacetylases (HDACs) that are removing histone acetylation (Polly et al., 2000). Generally, acetylation of histones mediates transcriptional activation through chromatin decondensation, while deacetylation mediates transcriptional repression through chromatin condensation (Wegel & Shaw, 2005). Transcription induced by NRs has recently been shown to be a cyclical process, where altering states of repressing, activation and initiation take place (Degenhardt et al., 2009). This process regulates tightly the transcriptional process via cyclical control of mRNA synthesis.

Because therapeutic levels of 1α,25(OH)$_2$D$_3$ cause hypercalcemic toxicity, thousands of synthetic 1α,25(OH)$_2$D$_3$ analogs are designed to improve medically interesting features of 1α,25(OH)$_2$D$_3$ and to decrease calcemic toxicity (Carlberg & Mouriño, 2003). An interesting analog is Gemini, which is a strong VDR agonist carrying two side chains,
while vitamin D₃ has only one. In addition, Gemini can bind VDR in a two different conformations (Väisänen et al., 2003; Molnár et al., 2006). In one conformation Gemini acts as an agonist, but in another conformation as an inverse agonist.

In this study, detailed time course experiments showed cyclical induction of the IGFBP3 gene in response to 1α,25(OH)₂D₃ stimulation, but not in response to Gemini. Transcriptional cycling resulted from cyclical recruitment of VDR on VDREs at the IGFBP3 promoter. In addition, the genes HDAC4 and HDAC6 were up-regulated in a cyclical fashion with 1α,25(OH)₂D₃, but not with Gemini. Interestingly, cycling of IGFBP3 expression was diminished, when HDAC4 and HDAC6 expressions were down-regulated by siRNAs. This observation establishes the significant roles of HDAC4 and HDAC6 for the cyclical regulation of VDR target gene expression induced by the natural ligand. In addition, HDAC4 and HDAC6 showed VDR-ligand induced association with VDRE regions. In conclusion, up-regulation of IGFBP3 mRNA expression in response to 1α,25(OH)₂D₃ is an interactive process, where cyclical recruitment of VDR, HDAC4 and HDAC6 to VDRE-containing promoter regions results in a cyclical mRNA accumulation.
2 LITERATURE REVIEW

2.1 1α,25(OH)2D3

2.1.1 Vitamin D3 metabolism

Vitamin D3 is a fat-soluble pro-hormone and is produced in skin or taken up from diet. Pre-vitamin D3 is produced in skin through UVB-irradiation of 7-dehydrocholesterol in a multi-step process. Additionally, vitamin D3 can be taken up from diet, such as dairy products, fish or eggs, but natural dietary sources are the minor component compared to the production in skin (Holllis, 2005). Vitamin D3 deficiency is very common and worldwide problem. The main reasons are that UVB radiation reduces towards northern latitudes and that skin pigmentation reduces vitamin D3 production (Lips, 2006). In addition, personal and cultural behavior affects largely to UVB exposure. To prevent vitamin D3 deficiency, vitamin D3 is added to fortified milk products in many countries and different products of supplementary vitamin D3 are commonly available for consumers.

Vitamin D3 is hydroxylated by liver 25-hydroxylases, encoded by the cytochrome P450 (CYP) genes CYP27A1 or CYP2R1, to 25-hydroxyvitamin D3 (25(OH)D3) that is an inactive form of vitamin D3, and stored in the liver (Deeb et al., 2007). In general, serum 25(OH)D3 levels represents the whole body’s vitamin D3 status and low serum 25(OH)D3 levels are a good marker of vitamin D3 deficiency (Garland et al., 2006). 25(OH)D3 is subsequently hydroxylated mainly in kidneys to 1α,25(OH)2D3 by mitochondrial 1α-hydroxylase encoded by the gene CYP27B1 (Haussler et al., 1998). This active form of vitamin D3 is the actual hormone and mediates most of the actions of all vitamin D3 derivates. Both 1α,25(OH)2D3 and 25(OH)D3 can be 24-hydroxylated to the metabolites 1α,24,25(OH)3D3 and 24,25(OH)2D3, respectively, which leads to catabolism of these metabolites. 24-hydroxylation is mediated by 25-hydroxyvitamin D3 24-hydroxylase (24-OHase), encoded by gene CYP24A1. In the circulation, all vitamin D3 metabolites are bound to vitamin D-binding protein (DBP), which binds with high affinity those metabolites and has a high homology to albumin (Lips, 2006). All metabolic steps are presented in Figure 1.
Figure 1. Vitamin D₃ metabolism (Adapted from Deeb et al., 2007). Vitamin D₃ is produced in skin or obtained from diet. Circulating pre-vitamin D₃ is bound to DBP and is converted to the active metabolites, 25(OH)D₃ and 1α,25(OH)₂D₃, by the liver and the kidneys. Parathyroid hormone (PTH) induces 1α,25(OH)₂D₃ production and 24-OHase mediates degradation of both 1α,25(OH)₂D₃ and 25(OH)D₃.

The 1α,25(OH)₂D₃ metabolism is tightly regulated to maintain constant 1α,25(OH)₂D₃ levels. Parathyroid hormone (PTH) induces renal CYP27B1 expression, which increases 1α,25(OH)₂D₃ production. In contrast, increasing levels of 1α,25(OH)₂D₃ repress CYP27B1 expression and induce strongly CYP24A1 expression, which mediates reduced production and increased degradation of active vitamin D₃ metabolites (Haussler et al., 1998). There is also an extra-renal tissue-specific regulation of CYP27B1 expression, which reveals both regulation and function of 1α,25(OH)₂D₃ metabolism in a tissue-specific manner (Zehnder et al., 2001).
2.1.2 1α,25(OH)₂D₃ actions on bone

An important role of 1α,25(OH)₂D₃ is in regulation of calcium and phosphate homeostasis and of bone mineralization (DeLuca, 2004; Lips, 2006). It is the only known hormone that directly induces i) production of proteins being involved in active intestinal calcium intake and ii) intestinal phosphate absorption (Wasserman & Fullmer, 1995; DeLuca, 2004). PTH production is actively induced in response to decreased calcium levels, which leads to production of more 1α,25(OH)₂D₃ and thus increased calcium levels. In cases when environmental calcium is not sufficiently available, both 1α,25(OH)₂D₃ and PTH induce bone resorption and reduce renal calcium excretion to maintain adequate serum calcium level (Suda et al., 2002). In contrast, increased calcium levels decrease PTH production and activate osteoblast formation in the bone. Overall, this regulatory network maintains both calcium and 1α,25(OH)₂D₃ levels in balance, which in turn keeps the formation and resorption of bone in balance. In vitamin D₃ deficiency or in cases when 1α,25(OH)₂D₃ metabolic pathways (such the CYP27B1 gene) are inoperative, calcium resorption from bone is increased due to the reduced intestinal intake and increased PTH levels, which can lead to osteomalacia or rickets (Lips, 2006).

2.1.3 Anti-tumor actions of 1α,25(OH)₂D₃

In addition to its role in mineral metabolism, it has been shown that 1α,25(OH)₂D₃ also plays important role in cell growth regulation and has anti-proliferative features (Ingraham et al., 2008). Furthermore, several epidemiological studies and meta-analyses have shown that low serum 25(OH)D₃ levels are connected to increased cancer incidents of the breast, colon, prostate and ovary and it is believed that adequate levels, in contrast, would offer a protective role against these cancers (Ingraham et al., 2008; Garland et al., 2006). In addition, overexpression of the CYP24A1 gene has been reported in several type of cancer tissues, which leads to reduced anti-cancer effects of 1α,25(OH)₂D₃ (Deeb et al., 2007).

In breast cancer cells the anti-cancer action of 1α,25(OH)₂D₃ includes cell cycle arrest and induction of apoptosis and differentiation (Welsh, 2007a; Mathiasen et al., 1999; Verlinden et al., 1998). However, these anti-cancer features vary between different cell and cancer types. In MCF-7 human breast cancer cells 1α,25(OH)₂D₃ can induce
retinoblastoma protein (pRb)-mediated G1/G0 cell cycle arrest by up-regulating gene expression of the cyclin-dependent kinase (CDK) inhibitor genes CDKN1A and CDKN1B which encode protein p21 and p27 respectively (Verlinden et al., 1998). This leads to inhibition of CDK activity, which in turn causes pRb hypophosphorylation and pRb-mediated cell cycle arrest.

In addition to its capacity to induce cell cycle arrest, 1α,25(OH)2D3 is able to induce apoptosis in MCF-7 and T47D cells (Mathiasen et al., 1999). Apoptosis is caused by down-regulation of the anti-apoptotic protein Bcl-2 and by translocation of the pro-apoptotic protein Bax from the cytosol to mitochondria in response to 1α,25(OH)2D3 treatment. However, overexpression of Bcl-2 is able to prevent this 1α,25(OH)2D3-induced apoptosis, which suggests the involvement of the Bcl-2 pathway in this process. Moreover, Xie et al. (1999) found that in these cell lines 1α,25(OH)2D3 induces growth inhibition by down-regulation of the insulin-like growth factor (IGF) signaling pathway, which leads to promotion of apoptosis. IGFs are strong anti-apoptotic peptides that mediate their mitogenic signals mainly through type I IGF receptor (IGF-IR) (Hwa et al., 1999). In addition, overexpression of IGF-IR is one feature of breast cancer cell and high levels of circulating IGFs are strongly associated to breast cancer risk (Renehan et al., 2006). Furthermore, up-regulation of proteins that are involved in regulating the actions of IGFs, such as IGFBPs, is one feature of 1α,25(OH)2D3-mediated growth inhibition in breast cancer cells (Colston et al., 1998). IGFBPs will be discussed in more detailed in chapter 2.4.

However, anti-cancer effects of 1α,25(OH)2D3 do not limit only to growth inhibition of cancer cells, but 1α,25(OH)2D3 signaling has also been associated in preventing carcinogenesis. 1α,25(OH)2D3 directly regulates key proteins involved in proliferation and differentiation of normal mammary cells (Welsh, 2007b). In the mouse mammary gland, the VDR is localized mainly in differentiated cells. During pregnancy and lactation, when cells undergo differentiation, expression of VDR is increased about 100-fold, while VDR knockout mice are undergoing excessive proliferation and impaired apoptosis (Zinser et al., 2002; Zinser & Welsh, 2004). In general, 1α,25(OH)2D3 signaling is found to promote or maintain the differentiated phenotype of normal mammary cells and also animal models have shown that 1α,25(OH)2D3 signaling protects against carcinogenesis of mammary cells
In addition, several epidemiological studies are consistent with the protective role of 1α,25(OH)₂D₃ in carcinogenesis (Deeb et al., 2007).

2.1.4 1α,25(OH)₂D₃ actions on immunity

1α,25(OH)₂D₃ signaling has been shown to have potent immunomodulatory effects in both innate and adaptive immune cells (Nagpal et al., 2005). VDR is expressed and is inducible by 1α,25(OH)₂D₃ in central immune cells, such as T-cells, monocytes/macrophages and natural killer cells (Veldman et al., 2000). In addition, several epidemiological studies have shown reduced serum 25(OH)D₃ levels in autoimmune diseases such as multiple sclerosis (MS), type I diabetes and rheumatoid arthritis (RA) (Nagpal et al., 2005). Adequate serum 25(OH)D₃ level, especially earlier in life, is suggested to offer protection against multiple sclerosis (Munger et al., 2006). Furthermore, VDR-ligands have shown to directly inhibit production of IL-12 cytokines by monocytes, which, in turn, leads to reduced T helper I (Th1) development without affecting T helper II (Th2) development (Mattner et al., 2000). Th1 cells play central role in MS, and reduction of Th1 development has been shown to be beneficial in treatment of MS in animal models.

Administration of 1α,25(OH)₂D₃ has been shown to be protective also in other autoimmune diseases. In NOD mice, which are the most widely used animal model for type I diabetes, onset of type I diabetes could be prevented by 1α,25(OH)₂D₃ and its synthetic analog administration (Mathieu et al., 1994, 1995). In addition, human study with high 1α,25(OH)₂D₃ administration from 1-year of age resulted in 80 % decreased risk of developing type I diabetes later in life (Hyppönen et al., 2001). Synthetic 1α,25(OH)₂D₃ analogs also effectively inhibited progression of ongoing type I diabetes in NOD mice (Gregori et al., 2002). This inhibition was associated with reduced Th1 infiltration into the pancreas, which was consequence from reduced IL-12 production. Furthermore, 1α,25(OH)₂D₃ or analog administration promoted improvement in RA symptoms and disease activity (Andjelkovic et al., 1999). All these features establish that 1α,25(OH)₂D₃, has an important role in the immune system by mediating Th1 suppression and adequate 1α,25(OH)₂D₃ intake may also reduce incidents of central autoimmune diseases.
2.2 Vitamin D₃ receptor

2.2.1 Overview of nuclear receptors

The VDR belongs to the 48-member superfamily of nuclear receptors (NRs) that are ligand-activated transcription factors and regulate gene expression of target proteins involved in various processes such as metabolism, reproduction and development (McKenna & O’Malley, 2002). In addition, VDR is one of the members of the classic 12 nuclear receptors that function as endocrine receptors, which bind their ligands with high affinity (Chawla et al., 2001) Ligands for NRs can be involved in endocrine signaling, such as thyroid and steroid hormones, or lipids involved in fatty acid metabolism (Li et al., 2003). There is also a group of orphan receptors, which ligands are either unknown or they are not ligand-activated at all (Benoit et al., 2006). Because NRs are central regulators of various genes, they serve as a good drug targets for numerous diseases such as asthma, type 2 diabetes, atherosclerosis and cancer. Structurally NRs share a highly conserved DNA-binding domain (DBD) and a structurally conserved carboxy-terminal ligand-binding domain (LBD) (Carlberg & Molnár, 2006). The DBD contains two conserved zinc finger motifs, which bind to specific DNA sequences, known as response elements (RE), in a regulatory region of target gene, while LBD contains a ligand-binding pocket (LBP), which serves as a binding site for the receptor-specific ligand (Chawla et al., 2001, Carlberg & Molnár, 2006). In general, NRs can be considered as molecular switches for transcription of those genes that contain response element in their promoter region (Carlberg & Polly, 1998).

2.2.2 VDR function

VDR is the only mediator of the genomic actions of 1α,25(OH)₂D₃, is expressed widely and can be detected in all human tissues (Carlberg, 2004; Carlberg et al., 2007). Primary 1α,25(OH)₂D₃ target genes contain usually several 1α,25(OH)₂D₃ response elements (VDREs), which are formed by two hexameric DNA sequences, core-binding motif, with the consensus sequence RGKTS(A or G, K = G or T, S = C or G) (Carlberg & Polly, 1998). Furthermore, core-binding motifs can be organized in three different
configurations; direct repeat (DR), everted repeat (ER) and inverted repeat (IR), with few intervening nucleotides. VDR regulates transcription by binding directly to VDREs primary as a heterodimer with RXR (Toell et al., 2000). VDR-RXR heterodimers prefer binding to DR-type motifs with 3 intervening nucleotides known as DR3 (Umesono et al., 1991). However, this is not the only functional VDRE motif and other functional VDRE-motifs are reported, such as DR4, ER6, ER7, ER8 and ER9 (Schräder et al., 1995; Quack & Carlberg, 2000). In addition, VDREs can be located on both DNA strands and also far away from transcription start site (TSS). For example, IGFBP3 promoter contains a tandem of two VDREs at position -400 and another VDRE in another strand at position -3350 relative to TSS (Peng et al., 2004; Matilainen et al., 2005).

When unliganded, VDRE-bound VDR-RXR-dimers associate with nuclear co-repressor proteins (CoRs), such as NCoR and SMRT, which in turn associate with histone deacetylases (HDACs) and keep chromatin in locally condensed and transcriptionally repressed state (Polly et al., 2000). Binding of 1α,25(OH)2D3 to the LBP of LBD changes the conformation of LBD, which destabilizes the CoR-VDR complex and results in release of CoRs and subsequent recruitment of co-activator (CoA) proteins, such as proteins of the p160-family (Leo & Chen, 2000). Some CoAs have histone acetyltransferase (HAT) activity or are complexed with proteins having such activity and this results in local chromatin decondensation (Castillo et al., 1999). Ligand-activated VDR subsequently releases CoAs of the p160 family and interacts with those CoAs of mediator complexes, such as Med1 (Rachez et al., 1998). The mediator complex is a multi-subunit CoA complex and consist of 15-20 proteins, which build a bridge between VDR and basal transcription machinery located on the TSS (Rachez et al., 1999). Through these events 1α,25(OH)2D3-activated VDR can mediate both the modification of chromatin and direct regulation of transcription by protein-protein interactions. These ligand-induced actions of VDR are in central role in nuclear 1α,25(OH)2D3 signaling and activation of transcription.

As described, transcription mediated by NRs is a dynamic process. In addition, recent chromatin immunoprecipitation (ChIP) and mRNA expression studies have shown both cyclical promoter activation and mRNA expression mediated by NRs, such as estrogen receptor α on the trefoil factor-1 gene, peroxisome proliferater-activated receptor δ on the pyruvate dehydrogenase kinase 4 gene and VDR on the CYP24A1 and CDKN1A genes (Métilvier et al., 2003; Kim et al., 2005; Degenhardt et al., 2009; Saramäki et al., 2009).
According to these studies, dynamic nature of transcription is a tightly regulated cyclical process, where alternating activation and repression takes place.

2.2.3 $1\alpha,25$(OH)$_2$D$_3$ analogs as VDR ligands

It is well established that $1\alpha,25$(OH)$_2$D$_3$-activated VDR possesses many potential therapeutic features and is therefore a very interesting target for medical applications. However, several clinical trials with $1\alpha,25$(OH)$_2$D$_3$ have been failed because of the hypercalcemic toxicity of the hormone (Deeb et al., 2007). Therefore over 3000 $1\alpha,25$(OH)$_2$D$_3$ analogs have been designed over the years in order to prevent hypercalcemia and to improve biological capacity of the natural hormone in hyper-proliferative diseases, such as cancer, or in bone disorders, such as osteoporosis (Bouillon et al., 1995; Carlberg & Mouriño, 2003). Most of the analogs carry a modification in their side chain, which in many cases also declines their 24-OHase-mediated degradation and increases stability of the VDR-ligand complex (van den Bemd et al., 1996; Bury et al., 2001). In addition, many analogs have either low or sometimes extremely low affinity to DBP (Bouillon et al., 1996). Low DBP binding and altered intracellular metabolism of analogs compared to natural ligand creates also distinctive tissue-specific pharmacokinetic features for VDR ligands.

Most of the $1\alpha,25$(OH)$_2$D$_3$ analogs are agonists and only few are identified as antagonists. An interesting analog is Gemini, which has two identical side chains (Figure 2) and has therefore a 20% bigger volume than natural ligand (Herdick et al., 2000; Norman et al., 2000). Despite the size of Gemini, the LBP of the VDR is flexible enough to accommodate Gemini in two different conformations (Väisänen et al., 2003; Molnár et al., 2006). As one of the side chains takes the same position as that of natural ligand, Gemini acts as an agonist. In contrast, Gemini can act as an inverse agonist, when both side chains take alternative position to that of natural hormone (Gonzales et al., 2003). Further changes between agonistic and inverse agonistic conformations were found to response in cellular CoA and CoR levels. In normal or CoA-rich circumstances Gemini acts as an agonist and stabilizes VDR into active conformation, but at CoR excess Gemini can bind the LBP in inverse agonistic conformation, actively recruits CoRs to the VDR and induces repression. These features suggest that Gemini can sense the CoA/CoR ratio, which is an important
cell-specific characteristic. Taken together, $1\alpha,25(OH)_2D_3$ analogs have improved biological properties compared to that of the natural ligand without having hypercalcemic side effects and are therefore of great interest in research due to their potential for different type of therapeutic applications.

![Figure 2. Molecular structure of $1\alpha,25(OH)_2D_3$ and Gemini.](image)

Gemini differs from $1\alpha,25(OH)_2D_3$ by having two identical side chain branching from carbon 20, while $1\alpha,25(OH)_2D_3$ has only one.

2.3 Chromatin structure

In every human cell there is almost 2 m of DNA-helix packed into the nucleus of about 10 µm diameter. This can be achieved only by tight organization of DNA into a complex with histone-proteins to form nucleosomes (Figure 3). In one nucleosome 145-147 bp of DNA-helix with a diameter of 2 nm is wrapped in 1.75 turns around a globular histone octamer to form a nucleosome core (Luger et al., 1997). Core nucleosomes are separated by 10 to 90 bp of intervening linker-DNA. This forms chromatin structure that is considered as a 10 nm fibre or “bead on a string” conformation and is about 5- to 10-fold condensed (Felsenfeld & Groudine, 2003). The histone octamer is built from two subunits of each histone proteins, H2A, H2B, H3 and H4, which consist of a C-terminal histone fold domain and N-terminal tail domain (Hansen, 2002; Horn & Peterson, 2002). Histone fold domains form the actual core of the nucleosome with histone-histone and histone-DNA interactions, while tail domains are point outside from core nucleosome and serve as sites for posttranslational modifications (Luger et al., 1997; Hansen, 2002; Horn & Peterson,
In addition, histone tails are able to associate with linker-DNA or with adjacent nucleotides.

Figure 3. Structure of multiple levels of chromatin condensation (Adapted from Horn & Peterson, 2002). Histone octamers and wrapped DNA-strand form core nucleosomes and 10 nm DNA fiber by internucleosomal interactions. Histone H1 stabilizes the next condensation level, 30 nm fiber, which can be further condensed by fibre-fibre interactions.

Furthermore, the 10 nm fibre can be folded into a fibre with a diameter of about 30 nm producing a net compaction about 50-fold. This 30 nm fibre is stabilized by the linker-protein, histone H1, which binds the core nucleosome and linker-DNA to condense the structure even more (Felsenfeld & Groudine, 2003). In further condensation, the 30 nm fibre is through long-range fibre-fibre interactions folded into higher order structures. There are several models how chromatin is packed in higher condensation rates, but detailed structures and compaction rates remain still unknown (Horn & Peterson, 2002). In addition, the diameter of higher compaction of chromatin folding is observed to vary from 80 nm to several hundred nanometers (Horn & Peterson, 2002; Felsenfeld & Groudine, 2003).

Transcription requires group of enzymes, transcription factors and cofactors to either directly access into the chromatin or to the proteins associated with chromatin. Therefore
chromatin is static and highly packed only during the metaphase of mitosis, while interphase chromatin is very dynamic and in constant change between condensing and decondensing states (Wegel & Shaw, 2005). Chromatin is decondensed during gene activation and is condensed, when genes are silenced. When chromatin is decondensed, also referred as open chromatin, it is accessible for NRs and other components of the transcription machinery (Elgin & Grewal, 2003; Wegel & Shaw, 2005). In addition, gene-rich areas of chromosomes are usually observed as very heterogeneous open chromatin, while repetitive units and gene-poor areas of chromatin, such as centromers and telomers, are usually condensed (closed chromatin) and not accessible for the transcription machinery. However, open chromatin does not always mean transcriptional activity and it has been shown that gene-rich open chromatin can also be transcriptionally inactive (Gilbert et al., 2004). In contrast, gene can be active in a gene-poor and largely condensed chromatin area, if there is enough local decondensation to open chromatin for transcription machinery. Therefore, it is suggested that open chromatin is required for transcription, but does not always stand for it.

The central mechanisms for modifying higher order of chromatin folding are posttranslational modifications of amino acid residues of the histone tails, such as lysine acetylation, lysine or arginine methylation and serine phosphorylation (Spotswood & Turner, 2002). In addition, histones can be modified by adding small peptides, such as ubiquitin or ubiquitin-like proteins (Gill, 2004). These posttranslational modifications of histone tails are reversible and in every histone type there are several possible positions for different modifications. When put together, these modifications form a large complex of different combinations. In addition, within the genomic region of one gene there can be several hundreds of nucleosomes. Different combinations of modifications can efficiently affect chromatin condensation and transcriptional regulation in a combination-dependent manner and thus it is suggested that histone tail modification patterns can contain epigenetic information, called the histone code (Jenuwein & Allis, 2001; Turner, 2002).

Furthermore, once chromatin is opened, the next level of chromatin modification can be achieved through ATP-dependent nucleosome remodelling that was first observed in vitro in Drosophila embryo extracts (Varga-Weisz et al., 1995). With nucleosome remodelling, accessibility of DNA is increased even more by stripping DNA from nucleosomes through energy-dependent relocation, reassembling and sliding of histone octamers (Becker, 2002).
2.3.1 Histone acetylation and deacetylation

Probably the best understood type of histone modification is acetylation of the lysine residues in core histone tails, which is executed by enzymes with HAT activity. Generally, histone acetylation is connected to gene activity through local chromatin decondensation, while decreased acetylation levels are associated with transcriptional repression. Acetylation of histones neutralizes positive charges of lysine residues and decreases their affinity to DNA, which in turn increases accessibility of transcription factors to DNA (Grunstein, 1997). However, histone acetylation does not limit only to the regulation of transcription, since there is also group of HAT proteins that are located in cytoplasm and are acetylating newly synthesized histones to assemble them as already acetylated into chromatin (Brownell, 1996). In addition, removing of acetyl groups is mediated by HDACs, which mediate chromatin condensation. NRs can interact with HDACs via CoRs whereas many CoAs possess HAT activity (Castillo et al., 1999; Polly et al., 2000). Therefore, histone acetylation is general part of NR-mediated transcription.

HDACs are a 18-member group of proteins consisting of two protein families with HDAC activity; the classic HDAC family (HDACs 1-11) and sirtuin family (SIRTs 1-7). These proteins can be further divided into four different classes (Table 1). HDACs do not bind directly to DNA and are usually part of a large multi-protein complex (Verdin et al., 2003). Class I HDACs are found almost exclusively in the nucleus, are ubiquitously expressed and seem to be involved in general cellular processes (Verdin et al., 2003; Gregoretti et al., 2004). In addition, HDAC3 can stably associate with the CoRs SMRT and NCoR to form multi-protein repressor complex.

In contrast to Class I, HDACs of Class II are able to shuttle between nucleus and cytoplasm in response to cellular signals and their mRNA expression is tissue specific. Class II can be further divided in two subgroups (IIa and IIb) based on their domain organization and sequence homology (Verdin et al., 2003). Furthermore, Class IIa HDACs 4, 5 and 7, having rather low deacetylase activity, are able to mediate their deacetylation by association directly with SMRT/NCOR-complex, which is a part of a multi-protein complex containing HDAC3 (Fischle, 2001; 2002). Without HDAC3 this complex is inactive, which suggest that HDAC3 brings enzymatic activity to that stable complex, while HDAC4, 5 and 7 can regulate this complex by recruiting it to gene promoters.
HDAC11, that forms alone the Class IV, is found primarily in nucleus. It is evolutionally related to HDAC3 and HDAC8, but it is not found from any known HDAC complexes, which suggest that it has biochemically distinct function (de Rujiter et al., 2003). Furthermore, sirtuins, that form Class III, are related to the yeast Sir2 protein and are also found in multi-protein complexes. All sirtuins are NAD-dependent deacetylases, while all other HDACs, in contrast, require zinc ion as a substrate into charge-relay deacetylation activity. In general, HDACs are important mediators of deacetylation and act as components of diverse repressor complexes.

Table 1. HDACs can be divided in four classes. HDACs 1, 2, 3 and 8 forms Class I. Class II can be divided in two subgroups, of which group a consists of HDACs 4, 5, 7 and 9, while HDACs 6 and 10 belong to group b. All 7 sirtuins form Class III and HDAC11 alone makes up Class IV.

<table>
<thead>
<tr>
<th>Class</th>
<th>HDACs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>HDAC1, HDAC2, HDAC3, HDAC8</td>
</tr>
<tr>
<td>Class IIa</td>
<td>HDAC4, HDAC5, HDAC7, HDAC9</td>
</tr>
<tr>
<td>Class IIb</td>
<td>HDAC6, HDAC10</td>
</tr>
<tr>
<td>Class III</td>
<td>SIRT1-7</td>
</tr>
<tr>
<td>Class IV</td>
<td>HDAC11</td>
</tr>
</tbody>
</table>
2.4 IGFBP3

2.4.1 IGFBP3 as a modulator of IGF signaling

IGFBPs are a family of proteins that regulate IGF-system by binding IGFs with high affinity. There are six well-identified mammalian IGFBPs, named IGFBP1 through IGFBP6, that are produced mainly by hepatic cells (Hwa et al., 1999; Zimmermann et al., 2000). The IGF system is the mediator for cellular mitogenic signals; its role in cell growth and differentiation is well established. The system consists of circulating IGF-I and IGF-II, which mediate their growth signals in target tissues through cell surface receptors, type I and II IGF-receptors (IGF-IR and IGF-IIR) or insulin receptor. Both IGFs (IGF-I and IGF-II) are mediating their mitotic signals mainly by binding and activating the IGF-IR (Hwa et al., 1999). Most of the IGFs are produced by hepatocytes in response to growth hormone stimulation and subsequently secreted to circulation to mediate mitogenic signals in target tissues (Zimmermann et al., 2000).

In circulation, IGFs (sized about 7 kDa) are rapidly degraded with a half-life of roughly 10 min (Baxter, 1994). To stabilize IGFs, over 90 % are bound to ternary complex, composed of one molecule of each IGF, acid-labile subunit (ALS) and IGFBP3, with total size of 150 kDa. In the complex, IGF’s half-life is found to increase up to 15 h (Guler et al., 1989). Interestingly, IGFBPs bind to IGFs with higher affinity than IGFs bind to their receptors and therefore IGFBP3, as a main binder of IGFs, is not only carrier and stabilizer of IGFs but is also able to regulate its bioavailability and signaling through IGF-Rs (Hwa et al., 1999). Moreover, a study performed with promyeloid HL-60 and monocytic U-937 cell lines has shown that IGFBP3 is able to suppress IGF-induced proliferation in these cells, while des-(1-3)-IGF-I, an IGF-I analog that does not bind to IGFBP3, stimulated cell proliferation (Li et al., 1997). In addition, membrane-associated IGFBP3 attenuates IGF-I-induced IGF-IR signaling in endometrial cancer cells overexpressing both IGF-IR and membrane-bound IGFBP3, while des-(1-3)-IGF-I caused receptor activation (Karas et al., 1997). In contrast, the same study showed that fibroblast cells lacking membrane-bound IGFBP3 but overexpressing IGF-IR showed similar IGF-IR activation to IGF-I and des-(1-3)-IGF-I. These findings establish that IGFBP3 has significant growth-inhibitory effects by preventing IGF-I binding to IGF-Rs.
Most of the circulating IGFBP3 is produced by hepatic Kupffer cells and endothelial cells to assemble them into the IGF-ALS-IGFBP3 complex or to secrete to circulation. However, IGFBP3 is produced also in a tissue-specific manner to mediate auto- and paracrine growth regulation (Yamada & Lee, 2009). In addition, IGFBP3 expression is found to be inducible by several growth inhibition agents, such as 1α,25(OH)2D3, transforming growth factor-β (TGF-β), TNF-α and retinoic acid in various cancer cell types, such as breast, prostate and fibroblast cancer cells. The IGFBP3 gene is a primary 1α,25(OH)2D3 target and has three response elements in its promoter (Figure 5, page 37), of which first two are located as tandem at position -400 bp (RE1/2) and third at position -3350 bp (RE3) (Matilainen et al., 2005). Rat prostate in vivo and prostate cancer in vitro studies with 1α,25(OH)2D3 and its analogs have shown that ligand treatment induces IGFBP3 expression, which leads to decreased cell proliferation (Nickerson & Huynh, 1999). This locally induced IGFBP3 is suggested to decrease IGFs availability and hence inhibit prostate or cell growth. Growth inhibition of MCF-7 and Hs578T human breast cancer cells induced by 1α,25(OH)2D3 was also associated with increased IGFBP3 expression (Colston et al., 1998). Furthermore, during p53-mediated apoptosis of colon carcinoma cells, p53 was directly found to up-regulate IGFBP3 expression via two p53 response elements found in IGFBP3 introns (Buckbinder et al., 1995).

2.4.2 IGF-independent actions of IGFBP3

Circulating or locally produced IGFBP3 is also able to mediate IGF-independent growth inhibition signaling. In addition, induction of IGFBP3 expression is a central tool studying IGF-independent actions in different cell types. It is suggested that IGFBP3 mediates its growth signaling actions through specific cell surface receptor, but to date, the specific receptor has not been published (Yamada & Lee, 2009). There are two putative receptors; firstly, Leal et al. (1997) found that in mink lung epithelial cells IGFBP3 binds to TGF-β type V receptor, but detailed signaling mechanism remains unknown. Secondly, Yamanaka et al. (1999) found that IGFBP3 to binds unknown receptor in breast cancer cell surface. Signaling of the receptor remains unknown, but it was found to bind IGFBP3 with high affinity and specificity. In addition, IGFBP3 contains a nuclear localization signal in its sequence and it has been shown to localize in nucleus (Jacques et al., 1997; Schedlich et
In the nucleus, IGFBP3 is able to directly control transcription by binding to RXRα (Liu et al., 2000). RXRα is also required for IGFBP3-mediated apoptosis. Furthermore, it has been shown that IGFBP3 stimulates RXR-α-Nur77-heterodimers to translocate from the nucleus into mitochondria, which initiates caspase activation and apoptosis (Lee et al., 2005).

However, IGFBP3 is able to mediate its growth inhibitive actions without binding to the cell surface or localizing into the nucleus. Increased IGFBP3 expression was shown to lead caspase-mediated apoptosis with reduced IGFBP3 cell surface binding and without localization into nucleus in study performed with T47D breast cancer cells (Butt et al., 2002). In LNCaP prostate cancer cells IGFBP3 induced by 1α,25(OH)2D3 was found to be critical for induction of CDKN1A expression and growth inhibition mediated by its gene product, p21 (Boyle et al., 2001). When IGFBP3 was withdrawn, no growth inhibition or CDKN1A expression was observed in response to 1α,25(OH)2D3. In contrast, a previous prostate cancer study (Nickerson & Huynh, 1999) suggested that 1α,25(OH)2D3 and its analogs induce IGFBP3-mediated but IGF-dependent growth inhibition. These findings establish that there are several pathways for IGFBP3 to inhibit cell growth and these pathways may be also cell-type specific.
3 AIMS OF THE STUDY

This study aims to investigate VDR-mediated regulation of the *IGFBP3* gene by using two different VDR ligands; 1α,25(OH)₂D₃ and Gemini. More specific aims are:

1. To study the effects of 1α,25(OH)₂D₃ and Gemini treatment on *IGFBP3* mRNA accumulation in MCF-10A cells by using real-time quantitative (RT-q) PCR.

2. To monitor the ligand-mediated changes in VDR binding and histone 4 acetylation level at VDREs in *IGFBP3* promoter by using ChIP assays.

3. To study the role of HDACs in *IGFBP3* mRNA accumulation induced by VDR ligands.
4 MATERIALS AND METHODS

4.1 Cell culture

All experiments in this thesis were done with MCF-10A cells. The human mammary epithelial cell line MCF-10A is an estrogen receptor negative and non-tumorigenic immortalized cell line. MCF-10A were grown in a mixture of phenol red-free Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F12 medium (1:1) with 20 ng/ml of epidermal growth factor, 100 ng/ml of cholera toxin, 10 µg/ml insulin, 500 ng/ml hydrocortisone, 0.1 mg/ml streptomycin, 100 U/ml penicillin and 5% horse serum. Cells were grown in humidified 95% air / 5% CO$_2$ incubator at 37 °C.

For mRNA and ChIP experiments the cells were seeded in the above-mentioned medium but with 5% charcoal-stripped fetal bovine serum (FBS) instead of horse serum. FBS was stripped of lipophilic compounds by stirring it with 5% (w/v) activated charcoal (Sigma-Aldrich) for 3 h at room temperature. Charcoal was then removed by centrifugation and sterile filtration (0.2 mm pore size). The cells were grown for 24 h to reach a density of 50 to 60% confluence.

During experiments, the cells were treated with either EtOH (0.001%), 1α,25(OH)$_2$D$_3$ or Gemini (both ligands were kindly provided by Dr. Milan Uskokovic, BioXell Inc., Nutley, NJ, USA). 1α,25(OH)$_2$D$_3$ and Gemini were used at a final concentration of 10 nM diluted in DMEM with 0.001% EtOH. All treatments were done without refreshing the medium.

4.2 RNA extraction and cDNA synthesis

Cells were seeded into 6-well plates and grown 24 h before ligand treatment. The cells were stimulated with ligands for indicated time periods. Total RNA was isolated from the cells using High Pure RNA Isolation Kit (Roche Diagnostic, Mannheim, Germany) as instructed by the manufacturer. Lysis of the cells was performed by adding 200 µl phosphate buffered saline (PBS; 150 mM NaCl, 2 mM KCl, 1.5 mM KH$_2$PO$_4$, 10 mM Na$_2$HPO$_4$ x H$_2$O) and 400 µl lysis buffer directly on culture plate after washing cells once
with PBS. Final elution of RNA was done in 50 µl of elution buffer. Total RNA amount and purity was quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA)

cDNA synthesis was performed using the Transcriptor First Strand cDNA synthesis kit (Roche, Mannheim, Germany) as instructed by the manufacturer. Template RNA (1 µg) was pre-incubated for 10 min with 50 pmol oligo(dT)$_{18}$ primer at 65 °C to denature secondary structures of RNA. Oligo(dT)$_{18}$ primers anneal to poly-A tail of mRNA. The synthesis was performed for 30 min at 55 °C in a total volume of 20 µl. After synthesis, the reaction was stopped by incubation for 5 min at to 85 °C; reaction mix was diluted then to a final volume of 400 µl with sterile H$_2$O.

4.3 siRNA inhibition

For knockdown mRNA expression, cells were reverse-transfected with small inhibitory RNA (siRNA, oligonucleotides shown in Table 2) using Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad, CA, USA). The positive surface charge of the liposome formed by reagent interacts with the siRNA oligonucleotides, allowing them to enter the cell through the negatively charged cell membrane. Three specific double-stranded oligos against a particular gene were used simultaneously and single unspecific control oligonucleotide was used as a control. Control transfection was always performed for same time points as for siRNA-transfection. First, the siRNA oligonucleotides (Eurogentec, 200 pmol of each or 600 pmol of control) were diluted to 500 µl of cell culture medium, but without antibiotics and serum. Then 5 µl RNAiMAX reagent was added and the mixture was incubated for 15-20 min at room temperature and laid to 6-well plates. MCF-10A cells (350,000) were added in 2.5 ml of medium with serum into the wells. The transfection was continued for 24 h before ligand treatment. RNA extraction and cDNA synthesis of treated cells were done as described previously. Transfection efficiency was monitored by measuring mRNA expression of the silenced gene from both control and siRNA samples with RT-qPCR and Western blot analysis.
Table 2. siRNA oligonucleotides. Location (relative to the TSS) and sequence of siRNA oligonucleotides used for gene-specific knockdown.

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Location</th>
<th>Sequence of + oligonucleotide (5’ - 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>UGCGCUACGAUCGACGAUG</td>
</tr>
<tr>
<td>HDAC4</td>
<td>1117</td>
<td>CGAGCACAUAAGCAACAA</td>
</tr>
<tr>
<td></td>
<td>1521</td>
<td>CAGCUUCUGAACCAUCUU</td>
</tr>
<tr>
<td></td>
<td>3279</td>
<td>GCGUGAGCAAGAUCCUCAU</td>
</tr>
<tr>
<td>HDAC6</td>
<td>174</td>
<td>GUGUCACUUCGAAGCGAAA</td>
</tr>
<tr>
<td></td>
<td>1771</td>
<td>CCGUGAGAGUUGCAAACUUU</td>
</tr>
<tr>
<td></td>
<td>2621</td>
<td>GGACCCUCCAGUUCUAAGU</td>
</tr>
</tbody>
</table>

4.4 PCR-primer design

RT-qPCR primers were designed with Oligo 4.0-s-software (National Biosciences, Plymouth, MN, USA). Primers for mRNA quantification (Table 3) were designed in a manner that either another primer overlaps with two exons, or there exists a large (several thousand base pairs) intron between primers to prevent possible replication of genomic DNA contamination in cDNA samples. Other primers were designed to achieve annealing energy of primer itself or between primer pair to be as near to zero as possible. Acceptable dimerization energy was between 0 and -5 kcal/mol. If possible, primers were designed to end with a C or a G at 3’ end. PCR-product length was between 80 and 150 bp and no hairpin formation was accepted. Specificity of designed primers was determined with nucleotide-BLAST searches from human genome or transcriptome database maintained by National Center for Biotechnology Information (NCBI). A criterion for specificity was that primer sequence is unique for DNA or cDNA sequence of interest and no exception were accepted. The designed primers were produced by Oligomer (Oligomer, Helsinki, Finland).

The PCR conditions for the designed primers were optimized with RT-qPCR machines (My-IQ-cycler, BioRad, California, USA) using Maxima™ SYBR Green/Fluorescein qPCR Master Mix 2 × (Fermentas, Vilnius, Lithuania). The reaction was performed with 8 µl of cDNA template and 4 pmol of both forward and reverse primers in total volume of 20
µl. The PCR cycling conditions used were 10 min at 95 °C, 45 cycles for 30 s at 95 °C, for 30 s at 56-66 °C and for 30 s at 72 °C, followed by further elongation for 10 min at 72 °C and melting curve analysis. The primer-specific annealing temperature was determined from Ct-values, melting curve and agarose gel electrophoresis results (Table 3).

Table 3. RT-qPCR primers. Sequences, product sizes and annealing temperatures of primer pairs used for gene-specific RT-qPCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer pairs (5’ - 3’)</th>
<th>Product size (bp)</th>
<th>Annealing temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPLP0</td>
<td>AGATGCAGCAGATCCGCATGTGGTGATACCTAAAGCCTG</td>
<td>318</td>
<td>58-62</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>AAGTTGACTACGAGTCTCAGACGGCAGGGACCATATTC</td>
<td>83</td>
<td>58</td>
</tr>
<tr>
<td>HDAC1</td>
<td>GATCTGTCCTCTCTGACAAAAGACTTTTCTCTCTCTCTCTG</td>
<td>159</td>
<td>60</td>
</tr>
<tr>
<td>HDAC2</td>
<td>CAGTGGAGATGAAAGATGGAGTTCACCACCTTGTTGCTG</td>
<td>241</td>
<td>60</td>
</tr>
<tr>
<td>HDAC3</td>
<td>CTTCATCCAGATGTCAGCAGCATCCACATGCTTTCTTTTTG</td>
<td>268</td>
<td>60</td>
</tr>
<tr>
<td>HDAC4</td>
<td>GCATGTGTGTCTTGCCTTGCTGTTCTCGCAAGTCTGAGCCT</td>
<td>191</td>
<td>60</td>
</tr>
<tr>
<td>HDAC5</td>
<td>ATGCTGTTGAAAAGACATCTCTTGGATCTCAGATGACTTTTC</td>
<td>272</td>
<td>60</td>
</tr>
<tr>
<td>HDAC6</td>
<td>GCAAGGGATGGATCTGAAACCCTAGGCTGTGAACCAACATC</td>
<td>201</td>
<td>60</td>
</tr>
<tr>
<td>HDAC7</td>
<td>CTCACTGTCAGCCCAAGAGTGTCACGCGAGGACCACATG</td>
<td>249</td>
<td>62</td>
</tr>
<tr>
<td>HDAC8</td>
<td>ACCAGATCTGTGAAAGTGTACAACTAGACCACATGCTTCAG</td>
<td>414</td>
<td>60</td>
</tr>
<tr>
<td>HDAC9</td>
<td>GCAGATCCACTGAACAAACTGATCGACATCTTTCACTCAG</td>
<td>240</td>
<td>60</td>
</tr>
<tr>
<td>HDAC10</td>
<td>ATGGAAAAACAAATGCGCTCTGGGCTCCGTTGGAC</td>
<td>367</td>
<td>62</td>
</tr>
<tr>
<td>HDAC11</td>
<td>GGACGACAAGCGGTGTGCTACATCAGGGTGTGCTGAGTTTCTGTG</td>
<td>443</td>
<td>60</td>
</tr>
</tbody>
</table>
4.5 RT-qPCR

RT-qPCR was performed with a LightCycler® 480 System (Roche Diagnostic, Mannheim, Germany) using Maxima™ SYBR Green/Fluorescein qPCR Master Mix 2 × (Fermentas). The reaction was performed with 4 µl of cDNA template and 4 pmol of both forward and reverse primers in a total volume of 10 µl. All primer sequences and primer-specific annealing temperatures are presented in Table 3. In the PCR, DNA was pre-denaturated for 10 min at 95 °C, followed amplification steps cycles (45 cycles) of 20 s denaturation at 95 °C, 20 s annealing at primer-specific temperature and 20 s elongation at 72 °C, followed by further elongation for 10 min at 72 °C and melting curve analysis.

Fold inductions were calculated using the formula $2^{\Delta\Delta Ct}$, where $\Delta\Delta Ct$ is $\Delta Ct_{\text{stimulus}} - \Delta Ct_{\text{solvent}}$, ΔCt is $Ct_{\text{target gene}} - Ct_{\text{control gene}}$. Control gene used was housekeeping gene ribosomal protein, large, p0 (RPLP0). Quality of the PCR product was monitored using post-PCR melt curve analysis. All PCR reactions were done as triplicates and two-tailed Student's t-tests were performed to determinate p-values in reference to non-treated cells to treatments.

4.6 ChIP assay

ChIP was used to determine certain protein binding or histone acetylation level on VDREs on the $IGFBP3$ promoter. The cells were seeded into 175 m² cell culture bottles with 20 ml medium and grown for 24 h. Before treatments volume of medium was reduced to 10 ml. The cells were stimulated with 1α,25(OH)₂D₃ or Gemini for indicated time points and nuclear proteins were cross-linked to chromatin by adding formaldehyde directly to the medium to a final concentration of 1%. After 5 min cross-linking at room temperature reaction was stopped by adding glycine (final concentration 0.125 M) and incubating for 5 min at room temperature on rocking platform. Cells were washed twice with ice-cold PBS, scraped into 5 ml PBS and moved to 15 ml tube. To ensure that all cells are transferred to the tube, cell culture bottle was washed twice with 5 ml PBS and washing solution was transferred to the tube. Cells were pelleted by centrifugation (700 × g for 5 min at 4 °C) and the pellet was resuspended in 600 µl of lysis buffer [1% SDS, 10 mM EDTA, 50 mM
Tris-HCl, 1 × protease inhibitor cocktail (Complete, Roche Diagnostic, Mannheim, Germany), pH 8.1] for 10 min at room temperature in 1.5 ml tubes. The lysate was sonicated 10 min by Bioruptor UCD-200 (Diagenode, Liege, Belgium) with intervals of 20 s sonication and 40 s hold in between to result in the majority of DNA fragments being 300-1000 bp in length. Cellular debris was removed by centrifugation for 10-15 min at 4 °C with 16000 × g. For the input samples, 50 µl of the lysate was diluted 1:10 in ChIP dilution buffer (0.01% SDS, 1.1% Triton-X-100, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris-HCl, pH 8.1), stored at 4 °C and further processed as the outputs from step reverse-crosslinking. The remaining lysate was aliquoted to 100 µl aliquots (output samples) and diluted 1:10 in ChIP dilution buffer enriched with 1 × protease inhibitor cocktail and 250 µg/ml of BSA. The output samples were incubated with respective antibodies (Table 4) for overnight at 4 °C on a rocking platform to form immuno-complexes.

The immuno-complexes were collected with 60 µl of protein A agarose slurry (Millipore, Temecula, CA, USA) for 1 h at 4 °C with rotation. EtOH of protein A agarose was changed to ChIP dilution buffer before using it. The beads were pelleted by centrifugation for 1 min at room temperature at 100 × g and washed sequentially 3 min by rotation with 1 ml of the following buffers: low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM NaCl and 20 mM Tris-HCl, pH 8.1), high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 500 mM NaCl and 20 mM Tris-HCl, pH 8.1) and LiCl wash buffer (0.25 mM LiCl, 1% Nonidet P-40, 1% sodium deoxycholate, 1 mM EDTA and 10 mM Tris-HCl, pH 8.1). Finally, the beads were washed twice with 1 ml TE buffer (1 mM EDTA and 10 mM Tris-HCl, pH 8.0). After each step beads were pelleted by centrifugation (100 × g for 1 min at room temperature) and the supernatant was aspirated. Immuno-complexes were eluted with 500 µl elution buffer (25 mM Tris-HCl, pH 7.5, 10 mM EDTA, 0.5% SDS) for 30 min at 65 °C.

Remaining proteins were digested from both output and input samples by adding proteinase K (final concentration 80 µg/ml, Fermentas) and simultaneously reverse cross-linked by incubating overnight at 64 °C. The DNA was recovered by phenol/chloroform/isoamyl alcohol (25:24:1, 500 µl per sample) extraction. After centrifugation (14,000 × g for 5 min at room temperature) the supernatant was transferred to fresh tube and DNA was precipitated with 50 µl of 3 M sodium acetate (pH 5.2) and 1
ml of ice-cold EtOH using 1.5 µl glycogen as a carrier (20 mg/ml, Fermentas). The DNA was pelleted with centrifugation (14,000 × g for 20 min at 4 °C) and the pellet was washed with 700 µl ice-cold 70% EtOH. Air-dried input and output samples were dissolved in 100 µl and 50 µl of H2O, respectively. The difference in final volumes and the difference in the amount of starting material used were taken into account when calculating the PCR results.

Table 4. Antibodies used in chromatin immunoprecipitation.

<table>
<thead>
<tr>
<th>Antibody target</th>
<th>Code</th>
<th>Amount used</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>12-370, 1 mg/ml</td>
<td>1 µl per sample</td>
<td>Upstate</td>
</tr>
<tr>
<td>VDR</td>
<td>SC-1008, 200 µg/ml</td>
<td>5 µl per sample</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>AcH4</td>
<td>06-866, 1 mg/ml</td>
<td>1 µl per sample</td>
<td>Upstate</td>
</tr>
<tr>
<td>HDAC4</td>
<td>SC-11418</td>
<td>5 µl per sample</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>HDAC6</td>
<td>SC-11420</td>
<td>5 µl per sample</td>
<td>Santa Cruz</td>
</tr>
</tbody>
</table>

4.6.1 RT-qPCR of chromatin templates

Two primer pairs were designed to cover two VDREs regions within the IGFBP3 promoter (Table 5). Quantification of the RT-qPCR products was done using specific TaqMan probes labeled with 6-carboxyfluorescein (FAM) (Eurogentec, Liege, Belgium) (Table 6). The use of these probes ensures that only the particular PCR product of interest is quantified, because unique probe-sequence is complementary to the sequence of PCR product and therefore is targeting only the product of interest.

RT-qPCR was performed with LightCycler® 480 System (Roche Diagnostic, Mannheim, Germany) using Maxima Probe qPCR master mix 2 × (Fermentas, Vilnius, Lithuania). The reaction was performed with 3 µl of ChIP template and 4 pmol of both forward and reverse primers and 0.25 pmol TaqMan probe in a total volume of 10 µl. In the PCR, DNA was
pre-denatured for 10 min at 95 °C, followed 2-step amplification steps cycles (50 cycles) of 20 s denaturation at 95 °C and 60 s annealing and elongation at 60 °C with all primers.

Relative association of the chromatin bound proteins or histone acetylation level were calculated using the formula $2^{(\Delta Ct)} \times 100\%$ specific antibody - $2^{(\Delta Ct)} \times 100\%$ non-specific IgG, where ΔCt is the $Ct_{output} - Ct_{input}$ and Ct is the cycle, where the threshold is crossed and normalized by the amount of chromatin used for preparation of input versus output. All PCR reactions were done as triplicates and two-tailed Student's t-tests were performed to determine P-values in reference to non-treated cells to treatments.

Table 5. ChIP primers. Location (relative to TSS) and sequences of the PCR primer pairs used to detect two genomic regions on *IGFBP3* promoter.

<table>
<thead>
<tr>
<th>Region</th>
<th>Location</th>
<th>Primer sequence (5’ - 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1/2</td>
<td>- 419 to - 293</td>
<td>CGCTGTATGCCCAGTTTCC TCACCCAGTCACTCCTG</td>
</tr>
<tr>
<td>RE3</td>
<td>- 3401 to - 3256</td>
<td>CTCCCACATTGTTTAAGACTC GTAGGCAGTGTGACAGCAG</td>
</tr>
</tbody>
</table>

Table 6. Sequences of FAM-modified qPCR probes. These probes carry at their 5’ end a FAM group and were used for the quantification of ChIP products.

<table>
<thead>
<tr>
<th>Probe target</th>
<th>Location</th>
<th>Primer sequence (5’ - 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1/2</td>
<td>-389 to -369</td>
<td>TCGCCGCAGGGAGACCTCAC</td>
</tr>
<tr>
<td>RE3</td>
<td>-3376 to -3351</td>
<td>TCAAATGCCACCACCTTCAGAAGT</td>
</tr>
</tbody>
</table>
5 RESULTS

5.1 Cyclical induction of IGFBP3 mRNA expression by 1α,25(OH)2D3

MCF-10A cells were treated with 10 nM 1α,25(OH)2D3 or Gemini in a detailed time course of 240 min with 15 min intervals. RT-qPCR was performed in order to monitor VDR-mediated mRNA induction profile of IGFBP3 in response to these two VDR ligands. In response to 1α,25(OH)2D3 mRNA induction found to be cyclical and showed peaks after 90, 150 and 210 min, which shows a periodicity of 60 min (Figure 4A). After each peak mRNA level was decreased. In response to Gemini, induction was linear increasing continuously (Figure 4B). Induction of mRNA was also far more stronger in response to Gemini (5.5-fold induction at 240 min) than to 1α,25(OH)2D3 (2.6-fold induction maxima at 210 min). Taken together, in response to 1α,25(OH)2D3 mRNA induction of IGFBP3 takes place only in 60 min pulses while in response to Gemini mRNA expression is continuously active. The basal level of IGFBP3 mRNA expression is shown in Figure 12.

5.2 VDR binding to the IGFBP3 promoter in response to 1α,25(OH)2D3 and Gemini

To study, whether the cyclical changes in IGFBP3 mRNA expression in response to 1α,25(OH)2D3 is based on VDR binding on the IGFBP3 promoter, ChIP assay was performed in 1α,25(OH)2D3 and Gemini treated cells with antibody against VDR (Figure 5). ChIP assay was performed over a time period of 150 min. RT-qPCR using TaqMan probes was performed with chromatin templates to determine VDR binding on the two VDREs, RE1/2 and RE3 (Figure 5), located within IGFBP3 promoter.
Figure 4. Periodic changes in *IGFBP3* mRNA expression. RT-qPCR was performed to determine the mRNA accumulation of the *IGFBP3* gene in MCF-10A cells after treatment with 10 nM 1α,25(OH)_{2}D_{3} (A) or Gemini (B) over a time period of 240 min with 15 min intervals. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the mRNA induction in reference to solvent control and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).
In response to 1α,25(OH)2D3 treatment, binding of VDR was cyclical and showed peaks at 30 and 105 min in both VDRE regions (Figure 5A and C). After Gemini treatment VDR did not showed any cyclical association on RE1/2 (Figure 5B). In addition, no significant increase in VDR binding compared to time point 0 was observed. Gemini increased VDR binding on RE3 in cyclical fashion showing maximal levels at 45 and 120 min (Figure 5D).

IGFBP3

![Figure 5. Dynamic association of VDR with RE1/2 (A and B) and RE3 (B and D) on the IGFBP3 promoter. ChIP assay using anti-VDR antibodies was performed on chromatin extracts from MCF-10A cells treated for indicated time points with 10 nM 1α,25(OH)2D3 (A and C) or Gemini (B and D). Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the time-dependent association of VDR in reference to time point 0 and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).*]
5.3 Chromatin acetylation in response to 1α,25(OH)₂D₃ and Gemini

To study general chromatin activation of both VDREs within the IGFBP3 promoter, ChIP assay with antibodies against acetylated histone 4 (AcH4) was performed in MCF-10A cells that were treated for 30, 60, 90, 120 and 150 min with 1α,25(OH)₂D₃ or Gemini (Figure 6). On RE1/2 acetylation level of histone 4 stayed induced at 60 min in response to 1α,25(OH)₂D₃ peaking at 90 min (Figure 6A). In contrast, Gemini treatment caused increased, but relatively stable chromatin acetylation compared to that with 1α,25(OH)₂D₃. With Gemini treatment acetylation level increased already at 30 min and stayed induced over the whole time period of 150 min. Gemini induced relatively high and stable acetylation level on RE3, while 1α,25(OH)₂D₃-mediated acetylation was also overall high, but at time points 30 min and 150 min significantly lower than Gemini. In general, acetylation levels of histone 4 in both VDREs were much more complex with 1α,25(OH)₂D₃ than with Gemini.

![Figure 6. Acetylation level of histone 4 proteins in RE1/2 (A) RE3 (B). ChIP assay using anti-AcH4 antibodies was performed on chromatin extracts from MCF-10A cells treated for indicated time points with 10 nM 1α,25(OH)₂D₃ or Gemini. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the time-dependent acetylation in reference to time point 0 and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).](image-url)
5.4 HDACs mRNA expression in response to 1α,25(OH)₂D₃ and Gemini

Gene expression of every of the 11 HDAC genes were studied with RT-qPCR in order to determine if they are primary 1α,25(OH)₂D₃ or Gemini targets. HDAC9 was not sufficiently expressed in MCF-10A cell-line to reliably measure with RT-qPCR (Figure 12). Cells, that were treated over a time period of 240 min with 15 min intervals, showed that mRNA expression of only HDAC4 and HDAC6 found to be regulated by 1α,25(OH)₂D₃ (Figure 7A and C), while other HDACs were not significantly regulated by 1α,25(OH)₂D₃ (Figure 8). In response to 1α,25(OH)₂D₃ treatment, HDAC4 was regulated in a cyclical fashion with peaks at 30, 75, 150 and 210 min (Figure 7A), while HDAC6 showed peaks only at 30 and 75 min. On the contrary, after Gemini treatment was found that neither HDAC4 nor HDAC6 was regulated by Gemini (Figure 7B and C). In addition, any of the other HDACs were directly regulated by Gemini (Figure 9).
Figure 7. *HDAC4* and *HDAC6* mRNA expression after VDR-ligand treatment. RT-qPCR was performed to determine the mRNA accumulation of the genes *HDAC4* (A and B) and *HDAC6* (C and D) in MCF-10A cells after treatment with 10 nM 1α,25(OH)₂D₃ (A and C) or Gemini (B and D) over a time period of 240 min with 15 min intervals. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the mRNA induction in reference to solvent control and in comparison of the peaks to the minima (*p* < 0.05, **p** < 0.01, ***p** < 0.001).
Figure 8. mRNA expression of *HDAC* genes in response to 10 nM 1α,25(OH)_{2}D_{3}. RT-qPCR was performed to determine the mRNA accumulation of the genes *HDAC*1, 2, 3, 5, 7, 8, 10 and 11 in MCF-10A cells after treatment with 10 nM 1α,25(OH)_{2}D_{3} over a time period of 240 min with 15 min intervals. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the mRNA induction in reference to solvent control and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).
Figure 9. mRNA expression of HDAC genes in response to 10 nM Gemini. RT-qPCR was performed to determine the mRNA accumulation of the genes HDAC1, 2, 3, 5, 7, 8, 10 and 11 in MCF-10A cells after treatment with 10 nM Gemini over a time period of 240 min with 15 min intervals. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the mRNA induction in reference to solvent control and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).
5.5 Silencing of HDAC4 and HDAC6 mRNA expression by siRNA

HDAC4 and HDAC6 genes were silenced simultaneously in MCF-10A cells by gene-specific siRNA oligonucleotides. 24 h after transfection cells were treated with 1α,25(OH)2D3 over a time period of 120 to 240 min. With control transfection 1α,25(OH)2D3 treatment caused cyclical IGFBP3 mRNA accumulation showing peaks at 135 and 210 min (Figure 10A). This result corresponds to results from non-transfected cells (Figure 10A). Interestingly, silencing of HDAC4 and HDAC6 abolished mRNA cycling of IGFBP3 caused by 1α,25(OH)2D3 and changes expression to linear (Figure 10C). In contrast, IGFBP3 mRNA response to Gemini did not change after silencing HDAC4 and HDAC6 (Figure 10D) and expression profile was similar to that with control transfection (Figure 10B) or non-transfected cells (Figure 4B).

Figure 10. Effect of HDAC4 and HDAC6 silencing on the IGFBP3 mRNA expression. MCF-10A cells were transfected for 24 h with siRNA oligonucleotides against the HDAC4 and HDAC6 genes (C and D) or with a non-targeted control siRNA (A and B), and subsequently stimulated for indicated time points with 10 nM 1α,25(OH)2D3 (A and C) or Gemini (B and D). RT-qPCR was performed to determine the mRNA accumulation of IGFBP3 of indicated siRNA. Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the mRNA induction in reference to solvent control and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).
5.6 HDAC4 and HDAC6 association with VDREs on IGFBP3 promoter

ChIP assay with antibodies against HDAC4 and HDAC6 was performed in cells that were treated over a time period of 150 min with 1α,25(OH)2D3 or Gemini (Figure 11). At region RE1/2 high basal association with HDAC4 was observed (Figure 11A). In response to 1α,25(OH)2D3, association found to be cyclical and reduced to minima within 30 min, returned at 60 min and reduced again at 90 min. At region RE3 basal association of HDAC4 was not as strong as at RE3 (Figure 11C). After 1α,25(OH)2D3 treatment HDAC4 association also reduced to minima at 45 min and slowly increased to normal at 135 min. In response to Gemini, association of HDAC4 reduced within 15 to 45 min on both VDRE regions (Figures 11B and 11D). HDAC4 association was restored at 60 min on both VDREs and stayed high on RE3 and, but decreased again on RE1/2 at time points 120 and 150 min.

In response to 1α,25(OH)2D3, basal association of HDAC6 reduced at time points 15, 60 and 120 min on RE1/2 (Figure 11E) and at time point 15 min and over a time period of 60 to 120 min on RE3 (Figure 11G). In response to Gemini, HDAC6 association reduced on RE1/2 after 15 min, increased above the basal at 60 and 75 min, reduced to basal at 90 to 120 min, peaked at 135 min and was low at time point 150 min (Figure 11F). After Gemini treatment, HDAC6 association was reduced also on RE3 after 15 min, but stayed low over a time period to 45 min and 105 to 120 min (Figure 11H). In addition, HDAC6 levels were fully restored at time points 60 to 90 min and 135 to 150 min.
Figure 11. Association of HDAC4 and HDAC6 with RE1/2 and RE3 on the IGFBP3 promoter. ChIP assay using anti-HDAC4 (A, B, C and D) and anti-HDAC6 (E, F, G and H) antibodies was performed on chromatin extracts from MCF-10A cells treated for indicated time points with 10 nM 1α,25(OH)2D3 (A, C, E and G) or Gemini (B, D, F and H). Data points indicate the means of at least three independent experiments and the bars represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the time-dependent association of HDAC4 or HDAC6 in reference to time point 0 and in comparison of the peaks to the minima (*p < 0.05, **p < 0.01, ***p < 0.001).
Figure 12. Basal mRNA expression of HDAC genes in MCF-10A cells. RT-qPCR was performed to determine the basal mRNA expressions of IGFBP3 and the 11 HDAC genes in relation to the housekeeping gene RPLP0 in untreated cells. Data points indicate the means of at least three independent experiments and the bars represent standard deviations.
6 DISCUSSION

In this thesis, IGFBP3 mRNA accumulation was found to be inducible in a different fashion comparing the natural VDR ligand, 1α,25(OH)₂D₃, and the synthetic analog Gemini. The IGFBP3 gene is coding for a well-known growth regulator, is a primary VDR target and of high interest for studying 1α,25(OH)₂D₃-mediated growth inhibition in cancer cells. Therefore, it is also a good model for studying the molecular mechanisms of VDR-mediated transcription. In this study, it was found that in response to 1α,25(OH)₂D₃, IGFBP3 mRNA accumulation was cyclical resulting in states of transcriptional activation and repression with a periodicity of 60 min, while the Gemini-induced mRNA accumulation was linear and more stable. Cyclical mRNA expression, mediated by 1α,25(OH)₂D₃, led also to reduced total IGFBP3 induction (2.6-fold), compared to Gemini that showed a 5.5-fold maximal induction at time point 240 min.

Ligand treatment affects gene regulation by activating NR-mediated gene expression. This response is initiated by ligand binding to NRs, which in turn leads to activation of the receptor and subsequently to transcription. However, transcriptional cycling has been reported previously for other NR-activated genes (Métivier et al., 2003; Kim et al., 2005; Degenhardt et al., 2009; Saramäki et al., 2009). Cycling is the result from cyclical association of NRs, their CoAs and CoRs with chromatin. In this study, 1α,25(OH)₂D₃ treatment resulted in VDR association in a cyclical fashion with both VDRE regions on the IGFBP3 promoter. HDAC4 association was also cyclical on RE1/2, but in a different phase than VDR, being lowest when VDR association is peaking. In addition, at RE1/2 chromatin activation corresponds with mRNA accumulation. These results suggest that RE1/2 has probably a more important role in 1α,25(OH)₂D₃-mediated IGFBP3 mRNA cycling than RE3.

Furthermore, histone acetylation levels appeared to be more complex with the natural ligand treatment than with Gemini. In general, histone acetylation is associated with transcriptional activation and deacetylation with transcriptional repression through changes in chromatin condensation (Grunstein, 1997). Therefore, stably increasing chromatin activation observed in both VDRE regions with Gemini treatment correlates with steady mRNA accumulation.
Transcriptional cycling can be divided into three phases (Degenhardt et al., 2009). Firstly, in the deactivation phase, CoRs and HDACs associate with chromatin keeping it transcriptionally repressed. Secondly, in the activation phase, transcription factors and CoAs replace them. Finally, in the third, initiation phase, VDREs associate with RNA polymerase via mediator proteins resulting in mRNA synthesis. In this study, from the family of HDACs, only HDAC4 and HDAC6 were up-regulated by 1α,25(OH)2D3, but interestingly none of them responded to Gemini. Increased HDAC4 and HDAC6 availability can cause an extended deactivation phase with 1α,25(OH)2D3 treatment. During the transcriptional process, a prolonged deactivation phase results in mRNA degradation, while there is no new mRNA synthesis. This results then in cycling of mRNA accumulation.

Gemini is a synthetic VDR ligand and has a larger volume than 1α,25(OH)2D3, but is still able to fit to the LBP of the VDR (Molnár et al., 2006). In addition, Gemini has been shown to bind more efficiently to LBP than the natural ligand. This leads to prolonged activation phase. Furthermore, Gemini was not able to induce HDAC expression and therefore the cyclical deactivation phase may be shortened. As a result, mRNA synthesis phases are longer and deactivation phases are shorter, which leads to diminished mRNA cycling and more prominent mRNA induction due to more continuous mRNA synthesis.

Interestingly, 1α,25(OH)2D3-mediated transcriptional cycling was abolished when HDAC4 and HDAC6 expression was down-regulated by siRNA silencing. This supports the finding that these two HDACs are important components of the 1α,25(OH)2D3-induced transcriptional cycling. However, siRNA silencing does not change the total mRNA induction after 240 min ligand treatment and mRNA levels induced by both ligands remained at the levels of control transfections. This suggests that HDAC4 and HDAC6 are not the only mediators for diverse actions of these ligands, but stronger nature of VDR activation is still observed with Gemini. It should be noted that these ligands are physically different, and they also change conformation of VDR in a different fashion (Molnár et al., 2006). Therefore these findings suggest that HDAC4 and HDAC6 are mediators of transcriptional cycling, but are not the only reason for the diverse nature of these ligands.

However, HDAC4 and HDAC6 association into VDREs were not always congruent with observations of VDR recruitment and histone acetylation. In addition, HDAC6 association
with RE1/2 seemed to be more complex in response to Gemini, than in response to 1α,25(OH)₂D₃. Due to high standard deviations the interpretation of these results is unclear. And the respective assay will be repeated.

In conclusion, 1α,25(OH)₂D₃-mediated up-regulation of the IGFBP3 gene is an interactive process, where cyclical association of VDR, HDAC4, and HDAC6 with VDREs at the IGFBP3 promoter results in controlled and cyclical induction of mRNA expression. On the other hand, Gemini has far more potent and direct effect on the up-regulation of IGFBP3 without the cyclical control of transcription. The simplified model illustrates the diverse actions of 1α,25(OH)₂D₃- and Gemini-induced transcription via the VDR;

Figure 13. Model for mRNA periodicity in response to 1α,25(OH)₂D₃ and Gemini. In response to 1α,25(OH)₂D₃ (A) transcription is divided in three phases, which results in cycling of mRNA accumulation. In response to Gemini (B), the initiation phase is longer due to reduced deactivation phase. This results in more continuous mRNA accumulation.

