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ABSTRACT

In the majority of real world problems, the interesting quantities
cannot be measured directly. Instead, some measurable quantities
are usually related to the interesting quantities via mathematical
models, and thus information on the interesting quantities can be
obtained. With stable problems, one can perform a more or less
straightforward model fitting procedure to gain this information.
Technically, this fitting is usually carried out by minimizing the dif-
ference between the measurements and the model predictions.

With unstable problems, which are also called inverse problems,
such straightforward model fitting cannot be employed. Such prob-
lems can, however, be tackled by using so-called deterministic reg-
ularization appoaches, or by formulating the problem in the statis-
tical Bayesian framework. The latter approach is feasible also with
problems in which the models themselves are only partially known
or contain errors.

This thesis considers tomographic problems, which are one of
the largest classes of inverse problems. In particular, we consider
a soft-field tomographic modality which probes the unknown ob-
ject via electric fields. As specific technical model uncertainties,
we consider the domain truncation problem in which the computa-
tions are carried out in a small region of interest, and the problem
in which some uninteresting unknown quantities need to be han-
dled in an efficient manner. Furthermore, the focus in this thesis
is on models and approaches that facilitate efficient computations.
Thus, simultaneous model reduction is also considered. As particu-
lar applications, we consider specific problems in hydrogeophysics
and process tomography.

The methods and results in this thesis show that the recently
proposed approximation error approach is a feasible one for the
considered model uncertainties, as well as simultaneous model re-
duction. Most of the studies address only the feasibility of the com-
putational approaches but in one case we also show that the frame-
work is feasible with dynamical laboratory measurement setup.



Overall, the results of the thesis suggest that several practical in-
dustrial and similar inverse problems can be successfully handled
when the ubiquitous modeling errors and uncertainties are treated
properly. Furthermore, making the applications industrially fea-
sible by employing simultaneous model reduction is possible by
using the same formalism. This property reduces the overhead of
developing the approach for specific industrial problems.

Universal Decimal Classification: 537.311.6, 550.3, 556.012, 621.3.011.2,
621.317.33
PACS Classification: 02.30.Zz, 06.20.Dk, 81.70.Tx, 84.37.+q, 87.63.Pn
INSPEC Thesaurus: inverse problems; tomography; electric resistance
measurement; electric impedance measurement; process monitoring; hy-
drology; geophysics; uncertainty handling; errors; modelling
Yleinen suomalainen asiasanasto: tomografia; prosessit; monitorointi; tarkkailu;
hydrologia; geofysiikka; epvarmuus; virheet; mallintaminen



ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
CEM Complete electrode model
ERT/EIT Electrical resistance (impedance) tomography
EKF Extended Kalman filter
MCMC Markov Chain Monte Carlo
MAP Maximum a posteriori

NOTATIONS

V Data vector (voltage observations)
σ Electrical conductivity
π Probapility density function
π(σ, V) Joint density of parameters and data
π(σ|V) Posterior density
π(V|σ) Likelihood density
π(σ) Prior density
v Gaussian observation noise
St Time-varying variable
ht Evolution model
gt Observation model
ωt State noise
εt Observation noise
Ū Accurate complete electrode model

also referred as forward model for EIT/ERT
z Contact impedance



ξ̄ Boundary conditions
e Additive errors
P Projection operator
U Computationally reduced forward model
e∗ Mean value of e
Γ Covariance matrix
�r Position vector
u Potential distribution
Ω Domain
∂Ω Boundary of Ω
Nel Number of electrodes
e� lth electrode
z� Contact impedance on lth electrode
U� Potential on the �th electrode
RN N-dimensional real space
I� Injected current through electrode e�
Z Augmented variable
Ξt Augmented variable
φ Porosity
K Unsaturated hydraulic conductivity
Pc Capillary pressure
ρw Water density
g Gravitational constant
ẑ Unit vector
k Absolute permeability
krel Relative permeability
μw Dynamic viscosity of water
m Soil-specific parameter
α Soil-specific parameter
Se Effective water saturation
Swr Residual water saturation
σw Electrical conductivity of the liquid phase
b Cementation index
n Saturation index
c Concentration distribution
�v Velocity field
κ Diffusion coefficient
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1 Introduction

Tomography, in the wide sense, refers to the construction of the in-
ternal structure of an object based on measurement that are carried
out only outside of the object. The internal structure can be probed,
for example, using X-rays or electromagnetic fields. The most com-
mon and well known tomographic modality is X-ray tomography,
which is widely used in biomedical imaging [1]. Different prob-
ing fields interact with the target material in different ways and
convey comlementary information on the target structure. For ex-
ample, X-ray tomography essentially probes the distribution of the
mass density. On the other hand, the interaction of electromagnetic
fields with the target depends significantly on the used frequency,
or wavelength of the field. In this thesis, we use low frequency elec-
tric fields, using a modality called electrical resistance tomography
(ERT), or electrical impedance tomography (EIT).

In hydrogeophysics, one uses geophysical methods, such as ERT
or seismic methods, to answer questions that are related to sub-
surface water distribution, or the flow of water or contaminants,
see for further information [2]. These questions may be related to
the distribution or flow itself, or to the characteristics of the sub-
surface that permit the flow. If, for example, we are interested in
how a particular ground patch would conduct contaminated water
spill and whether the contamination would eventually end in an
aquifer, we would typically need to know the spatial distribution
of hydraulic parameters first. Geophysical methods would in this
case be needed for the estimation of these parameters. In this the-
sis, we consider a particular case in which the water is not driven
by hydraulics, but by capillary and other similar physical processes.
Such cases are called vadoze (zones) [3].

In process tomography, the task is to probe the innards of pro-
cess vessels, mixers, pipelines, reactors and other targets used in
process industry. Typical tasks are to monitor the state of mix-
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ing, detection of air or gas, progress of chemical reactions and es-
timation of mass flow. Very often, the (possibly multi-phase) fluid
should be homogeneous on some scale, and the detection of devi-
ation from homogeneity is an intermediate task. With respect to
modalities, electromagnetic modalities such as ERT, EIT and elec-
trical capacitance tomography (ECT), are by far the most common
ones [4, 5].

Modeling is needed when the entities (variables) that we are
interested in, are not directly observable. On the other hand, we
are able to observe some other variables, which are connected to the
interesting variables through models. The straightforward classical
use of the models would then be to carry out the observations,
and find such parameters (interesting entities) that best fit to the
observations via the model.

One of the key issues in modeling is that models are always
mere approximations to, not exact representation of physical real-
ity, and are always subject to uncertainties and errors. The largest
class of models that relate the interesting and observable variables,
are partial differential equations (PDE’s) and the related initial-
boundary value problems. In some cases, PDE models can be
claimed to be quite accurate, in other, they are known to be highly
approximate idealizations. In addition to the PDE models being
approximate themselves, further approximations and errors are in-
troduced via different types of sources. For example, numerical
approximations have almost always to be used, which induces dis-
cretization errors, some of the conventionally required boundary
data (conditions) are not known, and the geometry of the target
may only be approximatively known. Furthermore, in some prob-
lems, the locations of where the measurements were made might
not be exactly known.

To further complicate the overall problem, many practical ap-
plications presume that all computations are carried out with very
limited computational arsenal and possibly in a time frame of a
millisecond, while conventional numerical considerations would of-
ten require using several seconds for the particular computations.
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Thus, even in cases in which a very good model would be avail-
able, this model could not be used in practice. This is particularly
common in process tomography applications. Whereas, in hydro-
geophysics, the processes are typically temporally very slow, in pro-
cess tomography the processes are often very fast. Other than this
difference, the modeling and computational problems that are re-
lated to hydrogeophysical and process tomography are either the
same or at least similar.

Computational models have been successfully used in science
and engineering for decades and even centuries. Why, then, are
uncertainties claimed to be particular problems in the above? The
answer here is that tomographic problems are a typical example
of inverse problems, which by loosely speaking are defined to be
problems that tolerate errors and uncertainties poorly [6, 7]. Classi-
cal successful examples of modeling are stable problems.

In many fields of science and engineering, proprietary, and often
very approximate, methods have been developed and used since
the 1930s, the classical theory of inverse problems can be said to
have been originated in the 1960s and to have been well established
in the 80s and 90s [8–13].

The classical theory considers the models as known and accu-
rate, and the measurement (observation) errors to be small or even
infinitesimal. As note above, in most practical inverse problems, the
models are not accurate, and furthermore, the measurement errors
can often not be considered to be small. The classical theory for the
solution of inverse problems, the regularization theory, is often not
well suited to dealing with inverse problems with approximative
and uncertain models [14–16].

The most natural approach to model errors and uncertainties, is
obviously statistics. This means that originally deterministic mod-
els, such as the convection-diffusion model, are turned to their
stochastic counterparts. This, then, requires the further modeling
of the underlying statistics of the models. With respect to choos-
ing between the frequentist and Bayesian frameworks for statistics,
the instability of inverse problems points directly to the Bayesian
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framework. In this framework, all primary and secondary uncer-
tainties and errors are modelled explicitly. This is an essential fea-
ture when the computational models are constructed so that they
tolerate unavoidable modeling related uncertainties. In this thesis,
the so-called approximation error approach is used as a building
block in the overall construction of the computational models.

Aims of the thesis

In this thesis, we consider four typical sources of errors and uncer-
tainties and typical related cases. The first uncertainty, the partially
unknown boundary data (or conditions), can be argued to be the
most common one. In almost all computational inverse problems
that are governed by partial differential equations and the related
boundary value problems, the whole domain can not be modelled.
Instead, only a subdomain around the region of interest is mod-
elled, and the computational domain is truncated to include this
subdomain only. On these truncation boundaries, the boundary
conditions are not known. Employing standard off-the-shelf bound-
ary conditions will in most cases render the solutions useless and
meaningless. Paper I deals with this particular problem. The ap-
proximation error approach is employed to construct the statistical
model for the observation errors that are related to the unknown
boundary conditions. The application that is considered is geo-
physical ERT.

Papers II and III deal with nonstationary hydrogeophysical prob-
lems, in which the unknowns are modelled as stochastic processes.
State estimation approaches, such as Kalman filters, are typically
used for the solution of such problems. The uncertainties here are
related to the modeling of the statistics of these processes. The
feasibility of these models is shown to be an essential requirement
for the overall solvability of the problem. In addition, in Paper III,
we consider the additional uncertainty of not knowing the central
hydrological parameter (permittivity) when estimating the flow of
water in a simulated injection case. Furthermore, we consider an
approach to update the statistics of the related stochastic processes
as time evolves and further observations are acquired.
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In Paper IV, we again consider the nonstationary inversion prob-
lem, here in the context of process tomography. In this case, the
principal uncertainty is related to symmetry, and is not inherent to
the overall problem. Instead, the symmetry problem is induced via
the practical problem of constructing a two-dimensional measure-
ment sensor in a three-dimensional situation. The approach here is
to construct a special nonstationary model which breaks the sym-
metry problem. The modeling of the unknown boundary condi-
tions and other uncertainties as a stochastic process plays a central
role in this task.
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2 Inverse Problems

2.1 BAYESIAN FRAMEWORK FOR INVERSE PROBLEMS

The classical theory of ill-posed problems has been developed since
the 60’s [8–11] and produced a number of different approaches,
such as truncated singular value decomposition, Tikhonov regular-
ization, stopped iterative methods, to accompany the obvious pro-
jection approaches, see for example [6, 7, 12, 13, 17]. These methods
are referred to as regularization methods.

Regularization methods are not based on explicit models for
the unknowns, except in the case of some projection methods [18,
19]. However, these methods can be argued to employ implicit
models, which is clearest in the case of truncated singular value
decomposition [14]. Also, the deterministic methods usually seek
only to find a single solution for the problem, possibly with some
error estimates based, for example, on sensitivity analysis. These
error estimates do not, however, generally bear any clear (statistical)
interpretation. Also, regularization methods are implicitly based on
a number of assumptions which may not be valid [14]. For example,
using 2-norm based functionals (to be minimized) usually refers to
an additive noise model with independent identically distributed
Gaussian errors.

In statistical (Bayesian) inversion theory all variables are mod-
elled explicitly and are considered as random variables, see [14–16,
20, 21]. Given the measurements, the primary objective in Bayesian
inversion is to determine the posterior probability density of the
quantity of interest, given the measurements. The posterior density
can be understood as the solution of the inverse problem, providing
the basis for computing various point estimates as well as spread
and interval estimates, and posterior marginal distributions.

Bayesian inversion is a hierarchical process which first calls for
the modeling of the measurement process and the unknown, with
special reference to the actual uncertainties of the models. These
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models, the likelihood model and the prior model, respectively, to-
gether with the measurements fix the uncertainty of the unknowns
given the measurements. Formally, this uncertainty is given in the
form of the posterior distribution which is then subject to exploration,
for example, using MCMC sampling [14, 16, 22, 23]. It is of central
importance that the modeling of the measurement process and the
modeling of the unknowns are carried out separately. This is not
usually the case with regularization methods in which a change in
measurement setting may change the implicit model for unknowns.

In the following, we use notations that are most common for
the electrical impedance tomograhy case, that is, the measurements
are voltages on electrodes and are denoted by V, and the primary
unknown is (a parametrization of) the resistivity or conductivity
distribution and is denoted by σ. Probability density functions are
denoted by π. It is central to bear in mind that all distributions are
to be understood as models, although they would occasionally be
referred simply to as distributions.

Let us assume that the continuous random variables σ ∈ RN

and V ∈ RNV have a joint probability density π(σ, V). According
to the definition of conditional densities, the joint density can be
expressed as

π(σ, V) = π(σ|V)π(V) = π(V|σ)π(σ), (2.1)

where the marginal densities are

π(V) =
∫

RN
π(σ, V)dσ and π(σ) =

∫
RNV

π(σ, V)dV.

From (2.1) we obtain the conditional probability density

π(σ|V) =
π(V|σ)π(σ)

π(V)
∝ π(V|σ)π(σ),

which is the well-known Bayes’ rule. Once observations are ob-
tained, Bayes’ formula allows us to calculate the posterior density.

Above, we assumed that the joint probability density π(σ, V) =

π(V|σ)π(σ) is known. The density π(V|σ), which is called the

10 Dissertations in Forestry and Natural Sciences No 82
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likelihood model, which typically consists of a deterministic for-
ward model and a statistical model of the observation noise e. In
addition, the marginal density (model) π(σ) must be constructed.
In statistical inversion, π(σ) is called the prior density (model). The
model π(σ) is constructed on the basis of knowledge on the quan-
tity of interest before any measurements are carried out. The con-
struction of the prior model is an important step, and care must be
taken so that the model is not too restrictive, and that it is feasible.
For discussion on feasibility of models in Bayesian inversion, see
for example, [24].

With inverse problems, the construction of the likelihood model
is much more critical. This is due to the fact that the likelihood
densities are typically very narrow, and mismodeling, and espe-
cially underestimating, the uncertainties and errors will almost in-
variably lead to an infeasible posterior model. This means that the
actual unknown can have essentially vanishing probability with re-
spect to the posterior model. This property makes inverse problems
a special class of Bayesian inference problems. See [21, 24] for fur-
ther discussion on this topic.

In the case of additive Gaussian observation noise which is
mutually independent with the primary unknown, we can write
v = V − R(σ) ∼ N (v∗, Γv), where N denotes a Gaussian density
function, the likelihood density is of the form

π(V|σ) ∝ exp
{
−1

2
(V − R(σ)− v∗)TΓ−1

v (V − R(σ)− v∗)
}

.

Further, assuming that π(σ) = N (σ∗, Γσ) and assuming that v and
σ are mutually independent, the posterior density is

π(σ|V) ∝ exp { − 1
2
(V − R(σ)− v∗)TΓ−1

v (V − R(σ)− v∗)

−1
2
(σ − σ∗)TΓ−1

σ (σ − σ∗)
}

.

In high-dimensional problems, posterior densities are difficult to il-
lustrate; the solution is thus reported by computing point estimates.

Dissertations in Forestry and Natural Sciences No 82 11
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For example, the maximum a posteriori (MAP) estimate is given by

σ̂MAP = arg max
σ

π(σ|V).

and the conditional mean (CM) by

σ̂CM = E{σ|V} =
∫

RN
σπ(σ|V)dσ.

In addition to point estimates such as the MAP and CM esti-
mates, marginal densities of single variables or pairs of variables
are often of interest. Furthermore, some spread estimates are also
typically computed. In particular, (an approximation for) the con-
ditional covariance is almost always computed.

Giving an answer to a general statistical question regarding the
posterior uncertainty, in general, requires the implementation of
a Markov chain Monte Carlo (MCMC) algorithm that attempts to
yield a representative ensemble of samples from the posterior dis-
tribution. The MCMC based inference is almost invariably an in-
feasible alternative when end applications are considered. In this
thesis, we do not consider MCMC sampling and general inference.
Rather, the focus is on Bayesian modeling and carrying out approx-
imate inference that is based on a feasible posterior model.

2.2 NONSTATIONARY INVERSE PROBLEMS AND STATE ES-

TIMATION

Inverse problems in which the unknowns are time-varying, are re-
ferred to as dynamic, time-varying, or nonstationary inverse prob-
lems [14, 19, 25]. Several inverse problems are nonstationary in the
sense that the unknown is naturally a time-varying variable. These
problems are also naturally considered in the Bayesian framework.
Nonstationary inverse problems are usually written as evolution-
observation models (or evolution-measurement models) in which
the evolution of the unknown is typically modelled as a (vector-
valued) stochastic process.

Problems in which the primary unknowns are explicitly time-
varying and can be modelled as stochastic processes, are called state

12 Dissertations in Forestry and Natural Sciences No 82
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estimation problems. The related algorithms are sequential and in the
most general form are of the Monte Carlo type [26]. However, the
most commonly used algorithms are based on the Kalman recur-
sions [14, 27–29], see also the review on state estimation in process
tomography in [30].

The sequential Bayesian filtering approach to solve the state es-
timation problem can be described as follows. Let St be a finite
dimensional time-varying variable. If conductivity is time varying
and the only time-dependent unknown, we would write St = σt.
Often, however, we would write St = (σt, ξt) where ξt is another
unknown (as in [IV]), or St could be a variable that depends on σt

(as in [II,III]).
The task is to estimate St based on some observations Vt. More

specifically, let St and Vt be stochastic processes defined for dis-
crete time indices t = 1, 2, . . . , T. Let the evolution of the state be
modeled as a first order Markov process

St+1 = ht(St, ωt) (2.2)

and the state is observed as described by the observation model:

Vt = gt(St, εt). (2.3)

Here, ht and gt are assumed to be known, possibly nonlinear, func-
tions. The temporally uncorrelated random vectors ωt and εt rep-
resent the state noise and observation noise, respectively. The con-
ditional probability densities p(Vt|St) and p(St|St−1) are related
to the observation and evolution models, and are called the like-
lihood density and the evolution (or prediction) density, respec-
tively. The objective of filtering is to determine the posterior dis-
tribution of the state St conditioned on a set of the observations
Dt = {V1, V2, . . . , Vt} obtained by that time. Filtering can be under-
stood as a process in which the knowledge of the system is updated
each time a new observation is made.

The updating process is a recursive scheme in which the evolu-
tion updating step and the observation updating step alternate. The
density for the first state, p(S0|D0) = p(S0), reflects the uncertainty
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in the initial conditions. The posterior densities are then obtained
recursively with the following updating formulas:

1. Evolution (time) update

p(St|Dt−1) =
∫

p(St|St−1)p(St−1|Dt−1)dSt−1 (2.4)

2. Observation (measurement) update

p(St|Dt) =
p(Vt|St)p(St|Dt−1)

p(Vt|Dt−1)
(2.5)

where

p(Vt|Dt−1) =
∫

p(Vt|St)p(St|Dt−1)dSt. (2.6)

The probability density obtained from the evolution updating can
be interpreted as the sequentially generated, time-evolving prior
model for the state St.

For Gaussian linear systems, the mean square state estimates
as well as the conditional covariances and marginal densities can
be computed using the classical Kalman filter algorithm. Approx-
imate solutions to nonlinear problems are typically computed us-
ing different versions of the extended Kalman filter (EKF), which
are based on sequential linearization of the observation model, and
sometimes also the evolution model. Furthermore, the linearization
can be carried out around different states. In highly nonlinear prob-
lems – such as those involving flow of water in unsaturated porous
media – care must be taken in choosing the version of the extended
Kalman filter. In this thesis, we employ the extended Kalman filter
(EKF) that is sequentially linearized in the predictor estimate. For
texts in state estimation, we refer to [29, 31] in general, to [14, 32]
in connnection to nonstationary inverse problems, and to [30] in
connection to general state space modeling.

2.3 TOMOGRAPHIC MODALITIES

In practice, tomography refers to estimating the internal structure
of an object when measurements can be carried out only outside
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the object, or at least outside the region of interest. The informa-
tion about the interior can be obtained, for example, by probing the
object with “hard field” radiation: high energy photons such as X-
rays, or particles, such as neutrons. The fluxes of outgoing photons
or neutrons are then measured at some locations around the ob-
ject. Excluding biomedical applications, the “soft-field” modalities
such as electrical impedance (resistance) tomography, optical (dif-
fusion) tomography, ulrasound and thermal tomography are more
common. The soft-field modalities are usually also called diffuse
modalities since, generally, all measurements depend on the object
properties in all of the object domain. For reviews of different to-
mographic modalities, see, for example, [1, 4, 5, 33].

In this thesis, we deal exclusively with the electrical resistance
tomography (ERT), which is the same as electrical impedance to-
mography (EIT) except that the phase shift of measurements is ig-
nored. It is a common practice, however, to refer to EIT also when
the phase shifts are ignored. The currently best known physical
model for EIT/ERT is called he complete electrode model and is treated
in Section 4.3.
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3 Uncertainties and approx-
imation errors

3.1 UNCERTAINTIES IN MATHEMATICAL MODELING

In the general field of inverse problems, the modeling of uncer-
tainties has been gaining systematic attention only recently, and is
mainly considered within the Bayesian framework [14]. Model er-
rors have only seldom been considered in the deterministic frame-
work, for an example, see [34]. In the deterministic framework it
is possible to derive error bounds under model errors but it is very
difficult to take any of these errors into account in the reconstruc-
tion itself.

Distributed parameter estimation problems induced by partial
differential equations and the related initial-boundary value prob-
lems (such as EIT) constitute perhaps the largest class of inverse
problems. Such models provide always a more or less simplified
approximation for the physical reality. For example, the following
modeling problems are common:

• The domain (geometry) is unknown or poorly known [35–38]
and [I]

• The location or other properties of measurement sensors is
only approximately known [39] and [IV]

• Measurement noise statistics is poorly known [15, 40]
• Simplified or approximate physical measurement models are

used [41] and [III]
• Models for the unknown variables (prior models) are uncer-

tain [42, 43] and [III,IV]
• Boundary conditions are partially unknown [44–46] and [I,III,IV]

Technically, there are two main approaches to model the un-
certainties: small-dimensional uncertainties can often be modelled
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using the hyperprior approach [22], but large dimensional uncer-
tianties (especially when computational efficiency is important) can
be handled using the approximation error approach, which is also
used in this thesis, see Section 3.4.

3.2 UNCERTAINTIES IN HYDROGEOPHYSICS

In hydrogeophysics, one is typically interested in a single distributed
parameter, such as saturation, while a large number of unknown
secondary distributed parameters are typically handled by insert-
ing a nominal spatially constant value for the variables. Since the
uninteresting parameters may occupy several orders of magnitude,
such as permeability does, the induced errors in the estimates may
be significant. Basically, there are three sets of model parameters
that may contain significant uncertainties. The first two ones are
the hydro(geo)logical parameters that describe the flows, and the
petrophysical parameters that are related to the mappings between
the flows and the measurable variables, as discussed, for example
in [47, 48] .

The geometry itself, however, can be taken to form a third set
of parameters in field measurements. The sensor locations are
typically uncertain with both surface and borehole measurements
[49, 50], and the ground surface topography is seldom modelled
properly. When ground penetrating radar (GPR) and ray tracing
forward models are used, It has been noted that the modeling un-
certainties may induce significant bias to the estimates [51]. Similar
observations have been made with respect to errors in petrophysical
parameters [52, 53]

There have been some attempts to take the modeling errors
into account, such as weighting the measurements [54] and mod-
eling errors as colored noise [55]. Systematic comprehensive ap-
proaches have not been introduced to model errors in hydrogeo-
physical imaging.
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3.3 UNCERTAINTIES IN PROCESS TOMOGRAPHY

In process tomography, the geometry of the entire object (such as a
pipeline) is typically very well known. In addition, the location of
the electrodes (or other sensors) are nowadays known accurately
since machining is computer controlled. In pipeline flow situa-
tions, however, the computational domain is typically truncated to
include only the electrode array and it’s immediate surroundings.
Thus, the boundary conditions of the PDE models on the bound-
aries of the computational domain are (again) unknown [14, 44].

In process vessels such as flotation cells and some types of biore-
actors, the height of the surface of the liquid or suspension in the
vessel can be unknown. Also, the upper part of the vessel may be
occupied by a very poorly conducting froth so that the practical
upper level of the domain is the surface of the liquid phase. This
level, furthermore, can be time-varying on both the fast and slow
time scales [4].

The properties of the sensors can also be both unknown and
time-varying, for example, due to corrosion or contamination. In
EIT, in particular, the contact impedances depend on the compo-
sition of the target (on a short time scale) and also on contamina-
tion (on a long time scale), and these impedances cannot be mea-
sured directly and independently of the primary unknown. Thus,
in practical process tomography using EIT measurements, the con-
tact impedances also have to be modeled as (time-varying) uncer-
tainties [IV], or marginalized.

The typical EIT measurement models are valid for low frequen-
cies and non-magnetic targets. In some mining-related processes,
the ores may contain ferromagnetic particles but the typically in
such small relative quantities that this is probably not a major prob-
lem. The main sources of errors are probably model reduction and
contact impedances (if they are not estimated simutaneously).

The evolution models in nonstationary (time-varying) cases, how-
ever, are practically always highly approximative. In theory, mul-
tiphase and turbulent computational fluid dynamics (CFD) models
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could be used. In practice in most practical applications, however,
the computational models have to be kept extremely efficient using
very limited computational resources, and evolution models using
high end CFD models may not be practicable. Most evolution mod-
els that have been employed, are either stationary or nostationary
Navier-Stokes models, or even simpler ones such as plug flow mod-
els [44, 56–58]. In practice, even stationary single phase models
have been shown to be feasible even for nonstationary multiphase
flows [59–61], [IV].

In pipeline flows, the boundary conditions of the evolution mod-
els on the input boundary is the most crucial uncertainty [56, 60].
Moreover, these conditions are time varying on all time scales. Philo-
sophically, if we knew the conditions on the input boundary, we
would not need to carry out any measurements. Thus, the (Dirich-
let) boundary conditions need to be modelled as stochastic pro-
cesses, and typically marginalized, see [44], [IV].

Whereas the number of secondary unknowns in a hydrogeolog-
ical state evolution model can be large, there is a dominant dis-
tributed parameter with typical pipeline flow problems: the ve-
locity field. This has been treated as a fixed (incorrect) nominal
field (typically parabolic flow profile) [44], estimated as a profile
only [61] marginalized entirely and embedded in the (approxima-
tion error) state noise [62] or marginalized partially, while the main
principal components have been estimated simultaneously with the
conductivity [58]. The appropriate approach depends naturally
heavily on the flow dynamics.

3.4 APPROXIMATION ERROR APPROACH

The approximation error approach was introduced in [14, 63] origi-
nally to handle pure model reduction errors. For example, in elec-
trical impedance (resistance) tomography (EIT, ERT) and deconvo-
lution problems, it was shown that significant model reduction is
possible without essentially sacrificing the feasibility of estimates.
With EIT, for example, this means that very low dimensional finite
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element approximations can be used. Later, the approach has also
been applied to handle other kinds of approximation and mod-
eling errors as well as other inverse problems: model reduction,
unknown anisotropy structures and approximate marginalization
of unknown but uninteresting scattering coefficient in diffuse opti-
cal tomography were treated in [35, 36, 43, 64]. Missing boundary
data in geophysical ERT/EIT was considered in [I]. Furthermore,
in [39,65] the problem of recovery from simultaneous domain trun-
cation and model reduction was found to be possible, and in [37,38]
the recovery from the errors related to inaccurately known body
shape was shown to be feasible. The most comprehensive treat-
ments of the approximation error theory in the stationary case can
be found in [24, 43].

In the following, we consider the case in which we have aux-
iliary (uninteresting) unknowns in addition to the interesting un-
knowns, and we also wish to use a (possibly significantly) approx-
imative model in the construction of the likelihood model. We fol-
low [43] and [24] in which the details can be found.

In what follows, an overbar refers to an accurate model. Let

V = Ū(σ̄, z, ξ) + e ∈ Rm

denote an accurate model for the relation between the potential
measurements and the unknowns (in the context of EIT, the vari-
ables can be interpreted as) conductivity σ, contact impedances z,
boundary conditions ξ, and let the additive errors e be mutually in-
dependent with (σ̄, z, ξ). The (accurate) complete electrode model
Ū and the related variables of the forward model for EIT/ERT are
described in Section 4.3.

Below, we approximate the accurate representation of the pri-
mary unknown σ̄ by σ = Pσ̄ where P is a projection operator. Let
π(σ, z, ξ, e) be the model for the joint distribution of the unknowns.

Instead of using the accurate forward model (σ̄, z, ξ) �→ Ū(σ̄, z, ξ)

with (x̄, z, ξ) as the unknowns, we fix the random variables (z, ξ) ←
(z0, ξ0) and use a computationally reduced model

σ �→ U(σ, z0, ξ0)

Dissertations in Forestry and Natural Sciences No 82 21



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

Thus, we write the measurement model in the form

V = Ū(σ̄, z, ξ) + e (3.1)

= U(σ, z0, ξ0) +
(
Ū(σ̄, z, ξ)− U(σ, z0, ξ0)

)
+ e (3.2)

= U(σ, z0, ξ0) + ε + e (3.3)

where we define the approximation error ε = ϕ(σ̄, z, ξ) = Ū(σ̄, z, ξ)−
U(σ, z0, ξ0). The expresion (3.3) is exact but not (yet) generally use-
ful.

Using the Bayes’ formula we get

π(V, σ, z, ξ, e, ε) = π(V | σ, z, ξ, e, ε)π(σ, z, ξ, e, ε)

= δ(V − U(σ, z0, ξ0)− e − ε)

π(e, ε | σ, z, ξ)π(z, ξ | σ)π(σ)

= π(V, z, ξ, e, ε | σ)π(σ)

giving the likelihood

π(V | σ) =
∫∫∫∫

π(V, z, ξ, e, ε | σ)de dε dz dξ

=
∫∫

δ(V − U(σ, z0, ξ0)− e − ε)π(e, ε|σ)de dε

=
∫

πe(V − U(σ, z0, ξ0)− ε)πε|σ(ε | σ) dε (3.4)

Next, both πe and πε|σ are approximated with normal distribu-
tions. Let the normal approximation for the joint density π(ε, σ)

be

π(ε, σ) ∝ exp

⎧⎨
⎩−1

2

(
ε − ε∗
σ − σ∗

)T (
Γε Γεσ

Γσε Γσ

)−1 (
ε − ε∗
σ − σ∗

)⎫⎬
⎭
(3.5)

Thus we write e ∼ N (e∗, Γe) and ε | σ ∼ N (ε∗,σ, Γε|σ) where

ε∗,σ = ε∗ + ΓεσΓ−1
σ (σ − σ∗) (3.6)

Γε|σ = Γε − ΓεσΓ−1
σ Γσε (3.7)
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Define ν = e + ε so that ν | σ = e + ε | σ and ν | σ ∼ N (ν∗|σ, Γν|σ)
where

ν∗|σ = e∗ + ε∗ + ΓεσΓ−1
σ (σ − σ∗) (3.8)

Γν|σ = Γe + Γε − ΓεσΓ−1
σ Γσε (3.9)

Thus, we obtain the approximate likelihood model

V | σ ∼ N (V − U(σ, z0, ξ0)− ν∗|σ, Γν|σ)

Assuming that we have a normal prior model N (σ∗, Γσ), we
obtain the approximation for the posterior distribution

π(σ |V) ∝ π(V | σ)π(σ) ∝ exp
(
−1

2
Ψ(σ)

)
where Ψ(σ) is

Ψ(σ) = (V − U(σ, z0, ξ0)− ν∗|σ)TΓ−1
ν|σ(V − U(σ, z0, ξ0)− ν∗|σ)

+ (σ − σ∗)TΓ−1
σ (σ − σ∗)

= ‖Lν|σ(V − U(σ, z0, ξ0)− ν∗|σ)‖2 + ‖Lσ(σ − σ∗)‖2 (3.10)

and where Γ−1
ν | σ

= LT
ν|σLν|σ, Γ−1

σ = LT
σ Lσ and ν∗|σ = ν∗|σ(σ).

The MAP estimate of σ with the approximation error model is
obtained by

σ̂ = arg min
σ

{‖Lν|σ(V − U(σ, z0, ξ0)− ν∗|σ)‖2 + ‖Lσ(σ − σ∗)‖2}
(3.11)

An estimate for the posterior covariance is computed by linearizing
U(σ, z0, ξ0) at σ = σ̂

Γ̂σ|d ≈
(

J̃TΓ−1
ν|σ J̃ + Γ−1

σ

)−1
(3.12)

where J̃ = J + ΓεσΓ−1
σ and J is the Jacobian of U(σ, z0, ξ0) evaluated

at σ = σ̂ .
In practice, one proceeds as follows. Denote η = (σ, z, ξ). Once

the model π(σ, z, ξ) is constructed, one computes an ensemble of
draws {η(�), � = 1, . . . , M} and then computes the respective ap-
proximation errors ε(�). All second order statistics is then estimated
via sample averages.
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3.5 APPROXIMATION ERRORS IN STATE ESTIMATION

The approximation error approach was extended to nonstationary
inverse problems in [66] in which linear nonstationary (heat trans-
fer) problems were considered, and in [67] and [68] in which non-
linear problems and state space identification problems were con-
sidered, respectively.

The earliest similar but partial treatment in the framework on
nonstationary inverse problems was considered in [44] in which
the the boundary data that is related to stochastic convection diffu-
sion models was partially unknown. A modification in which the
approximation error statistics can be updated with accumulating
information was proposed in [III] in the context of hydrogeophysi-
cal monitoring and in the context of flow monitoring in [69].

The treatment of modeling and approximation errors for nonsta-
tionary inverse problems was initiated in [44]. The analysis based
on the semigroup formulation was treated in [70]. The systematic
approach for numerical and computational implementation was de-
veloped in [66–68]. Recently, uncertainties in the hydrogeophysi-
cal Kalman filtering have been considered in [71–73]. They imple-
mented an ad hoc stochastic forcing term to model the uncertain-
ties. In the present paper we propose a more systematic approach
to the modeling of the stochastics of the evolution model.

In a nutshell, if the accurate state space model is of the form

σ̄t+1 = F̄t(σ̄t, zt, ξt) + wt

Vt = = Ūt(σ̄t, zt, ξt) + et

this is turned to an approximate model

σt+1 = Ft(σt, z0, ξ0) + wt + ht

Vt = Ut(σt, z0, ξ0) + et + qt

where the stochastic processes ht and qt are introduced by the ap-
proximation process, and (z0, ξ0) are some fixed values, possibly
related to contact impedances, boundary values, and/or uninter-
esting distributed parameters (especially in hydrogeophysics).
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State space models that are relevant in hydrogeophysics (in the
vadose, or unsaturated, conditions) and process tomography , are
discussed in Sections 5.2, [II,III], and 6.1, [IV], respectively. An ex-
tension to the approximation error approach that uses importance
sampling to update the statistics of the approximation error pro-
cesses, is discussed in Section 5.4 and in [III].
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4 Electrical impedance to-
mography and the truncation
problem

4.1 ELECTRICAL IMPEDANCE TOMOGRAPHY

Electrical resistance (impedance) tomography is an imaging method
in which the internal structure of the target of interest is probed by
conducting electric (alternating small frequency) currents into the
target and by measuring the resulting potentials on the boundary.
In practice, both the current injections and the potential measure-
ments are carried out through (and on) discrete electrodes that are
placed in contact with the target [74]. The current injections in-
duce a current and potential distribution in the target that depends
on the spatial conductivity distribution. In practice, several dif-
ferent current patterns (different combinations of currents on the
electrodes) and the coresponding measurements are used to obtain
a single reconstruction.

The mapping from currents to (measured) potentials is linear,
but the mapping from the conductivity distribution to the measure-
ments is nonlinear. The objective of EIT/ERT is to reconstruct, or
estimate, the electrical conductivity distribution within the target
based on the measured potentials on the boundary.

4.2 GENERAL CHOICES IN EIT IMAGING

Depending on the situation (the properties of the target, general
modeling issues, available computational resources), there is a large
number of choices that have to be made in choosing the reconstruc-
tion approach and mode.
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Absolute vs. difference imaging

In difference imaging, two sets of data are collected from the tar-
get in two different states. For example, a set of measurements are
obtained from a tank filled with saline, and another set when an
object is inserted into the tank. The difference on the conductivity
between these two states is then estimated based on the difference
between the two sets of measurements. This is the classical (engi-
neering) approach to EIT imaging and they are referred to as the
backprojection or the sensitivity approach [74]. No information on
the absolute values of conductivity can be obtained.

Absolute imaging is based on a single set of measurements,
and attempts to provide the actual conductivity values. The ab-
solute reconstructions are based on different PDE models, such as
the complete electrode model, and are either single step or itera-
tive algorithms. Both deterministic regularization approaches or
the Bayesian framework usualy need to be employed.

The difference modality has been the prevalent modality over
absolute imaging since it is relatively tolerant to various model-
ing errors and uncertainties. Also, the reconstructions are very fast
since they amount to a multiplication by a small dimensional ma-
trix only, with typically around 20,000 – 500,000 multiplications and
additions. The cons are, of course, that absolute values are not ac-
cessed and that the reconstructions are more or less qualitative in
any case. The grand challenge with absolute imaging is that the
overall computational model has to be comprehensive: no unhan-
dled uncertainties or model errors are tolerated, and the models
have to be feasible. In this thesis and in [I-IV], we consider mainly
absolute imaging.

Iterative vs. single step approaches

Absolute imaging can be carried out using a single step or an itera-
tive approach. The single step algorithms are related to sensitivity
approaches: if the sensitivity matrix is computed in the correct ge-
ometry and a feasible (usually spatially homogeneous) conductivity
value, this matrix corresponds to the Jacobian matrix of single step
algorithms such as NOSER [75].
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The single step reconsructions tend, however, to be blurry and
spatially qualitative, and they always correspond to basic normal
assumptions for measurement errors and target model [14, 76].

Since the mapping from the conductivity distribution to the
measurements is nonlinear, both the determination of regularized
least squares estimates (such as Tikhonov estimates) and the com-
putation of the MAP estimate are almost exclusively carried out
iteratively, see [77] for an exception in which the absolut image can
be computed without iterations in a 2D domain.

The iterative approaches are invariably quite slow, especially
since the Jacobian matrix has to be recomputed iteratively. The state
of the art approach to this subtopic is to use the so-called adjoint
methods.
Stationary vs nonstationary imaging

One of the first questions in choosing the reconstruction approach
is whether an adequate number of current patterns can be injected
before the target changes. In low noise environments, a single
current pattern and the measurements can be applied in about a
millisecond. In 3D and a system that can measure all voltages si-
multaneously, the complete linearly independent set of current pat-
terns can be carried out in about 50 - 100 milliseconds. If the target
changes during this period, the measurements don’t correspond to
the same conductivity distribution and the reconstructions are typ-
ically meaningless.

In process tomography, when fast flows in pipelines are con-
sidered, the target can typically be assumed to be constant (with
respect to time) for a few milliseconds only. Usually, a 3D recon-
struction is not feasible when data from a few injections only are
used, at least when standard binary current pattern types (current
is fed only through electrode pairs) are used. See [78] for the deter-
mination of so-called optimal current patterns that enable feasible
reconstructions using 1-3 current patterns only.

If the target (primary and secondary unknowns) can be mod-
elled as a stochastic process, this leads directly to the framework of
state estimation. State estimation in the context of inverse problems
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was developed, for example, in [14,25,44,79], especially in the con-
text of process tomography. Earlier, deterministic evolution models
were used in hydrogeophysics and some other fields [71,80], but the
models were taken as deterministic, that is they were (implicitly) as-
sumed to be an exact represention of the underlying physical pro-
cesses. The deterministic evolution models are technically treated
as constraints. Such deterministic models are difficult to sustain
in practical situations. The nonstationary EIT imaging is usually
based on the formulation of the problems as a sequential Bayesian
estimation problem, and then carrying out a number of (more or
less controlled) approximations so that extended Kalman filter can
be employed. This is the approach, for example, in [II,III,IV].

Modeling and handling of uncertainties

As claimed above, in absolute imaging with real data, the overall
model has to be feasible and the uncertainties cannot generally be
ignored. After a feasible model has been constructed, there are
basically two alternatives: either marginalize over the secondary
unknowns, or estimate these simultaneously with the primary un-
known. The latter usually leads to an infeasible computational model,
and can, of course, be a mathematically unidentifiable model too.
For example, in process tomography using the Navier-Stokes flow
model in an convection-diffusion model, the unknwons would typi-
cally be the (time-varying) conductivity distribution, (time-varying)
flow field, (time-varying) boundary conditions on all truncation
boundaries, diffusion coefficient and the (possibly time-varying)
contact impedances. All these would be needed to be estimated
typically based on around 10-50 real numbers at a time. Clearly
(especially the general time varying flow field), all the unknowns
cannot be estimated based on such data.

Thus, at least some of the uncertainties – and at least some com-
ponents of these – need to be (approximatively) marginalized. Sig-
nificant progress can, however, be made if feasible low dimensional
approximations can be constructed for the unknowns. Typically,
proper orthogonal decompositions (principal component analysis)
provide such low dimensional approximations, but this, again, pre-
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sumes feasible prior models for the unknowns, see, for example,
[62], in which only a few components of a time-varying Navier-
Stokes flow need to be estimated simultaneously with the conduc-
tivity, and the remainder together with the unknown time-varying
boundary data processes are embedded in the (approximation er-
ror) state noise process. In [II], we estimate the time-varying satu-
ration and take all other parameters as known.

In nonstationary situations, there is a major difference between
stationary and nonstationary uncertainties. As data is accumu-
lated, the conditional uncertainty of stationary uncertainties given
the data reduces (or at least does not increase). A solution to this
problem is considered in [III], in which we use the nonstationary
approximation error approach and marginalize over the unknown
(stationary) permeability distribution, and refine the approximation
error statistics continuously when more data is accumulated. The
approach is based on importance sampling of the approximation
errors.

In [IV], we consider real pipeline flow data and estimate the
time-varying contact impedances and boundary conditions simul-
taneously with the conductivity distribution. The additional com-
plexity here is that the electrodes are positioned on a single ring,
which in a stationary case would induce a theoretically unidentifi-
able problem. The evolution model and the state estimation formu-
lation, however, break the unidentifiability.

4.3 COMPLETE ELECTRODE MODEL

The model (that is part of the model of the likelihood) that gives
the errorless prediction of the measurements, is called the forward
model. In some cases, such as Poisson distributed observations, the
forward model provides the expectation of the measurements, see,
for example [14].

With EIT, the most accurate known forward model is called the
complete electrode model (CEM) [81–83]. The CEM is governed by the
following elliptic partial differential equation and boundary condi-
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tions:

∇ · (σ(�r)∇u(�r)) = 0, �r ∈ Ω ⊂ R2,3 (4.1)

u(�r) + z�σ(�r)
∂u
∂�n

= U�, �r ∈ e�, � = 1, 2, . . . , Nel (4.2)∫
e�

σ(�r)
∂u(�r)

∂�n
dS = I�, �r ∈ e�, � = 1, 2, . . . , Nel (4.3)

σ
∂u
∂�n

= 0, �r ∈ ∂Ω\ ∪Nel
�=1 e�, (4.4)

where �r is the position vector, u(�r) is the potential distribution in
Ω, σ(�r) is the conductivity distribution, Nel is the number of elec-
trodes, e� is the patch on the (internal or external) boundary ∂Ω
corresponding to the location of the �th electrode, z� is the contact
impedance between the �th electrode and the object to be imaged,
U� is the potential on the �th electrode, and I� the current injected
through electrode e�. The currents must satisfy the following charge
conservation law:

Nel

∑
�=1

I� = 0.

The collection of these currents is called a current pattern
I = (I1, . . . , INel )

T, and usually several different current patterns are
employed, and all the respective data is used to estimate a single
spatial conductivity distribution.

The reference level for the potential is defined, for example, by
setting

Nel

∑
�=1

U� = 0.

Given the injected currents, the ERT forward model can be formally
written using the CEM as

V = Ū(σ̄(�r); I) + e = R̄(σ̄(�r))I + e, (4.5)

where the vector V ∈ RNV contains the measured voltages cor-
responding to current pattern I, and e is the measurement error
resulting from non-ideal operation of the data collection system.
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The inverse problem consists of estimating the conductivity distri-
bution σ̄(�r) given the data V. Since no analytical solutions exist for
the geometric conditions encountered in practical applications, the
solution of the inverse problem is sought numerically. For this nu-
merical solution, the problem is conventionally approximated with
a finite-dimensional model

V = U(σ; I) + e. (4.6)

Here, σ ∈ RN is a typically high-resolution discrete approximation
for σ(�r) using a very large model domain, where N is the number
of conductivity values. The approximate model U(σ; I) can be con-
structed using, for example, the finite element method (FEM) [84],
boundary element method (BEM) [85], or other suitable numerical
schemes. In [I-IV], we use the finite element method that is based
on the variational form derived in [82].

4.4 DYNAMICAL EIT

As given in Section 3.5, the state estimation problem is of the form
(including the approximation error processes) when the secondary
unknowns have been approximately marginalized

σt+1 = Ft(σt, z0, ξ0) + wt + ht

Vt = Ut(σt, z0, ξ0) + et + qt

In the case of hydrogeopysical estimation of time-varying satura-
tion, the evolution model is usually written in terms of the satura-
tion St and the petrophysical model S �→ σ is embedded in U, as is
done in [II]. In [II], the variables (z0, ξ0) are taken as known, where
these refer to the contact impedances and all hydrogeophysical and
petrophysical parameters. In [III], the (time-invariant) permeability
ξ = k is taken as a secondary unknown, and the random variable k
is embedded in the process ht.

In [IV], we consider the single electrode ring case in which the
marginalization on secondary unknowns is not a feasible approach.
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Instead, we estimate both the contact impedances and the boundary
conditions simultaneously with the conductivity. Here, we denote
the (nonstationary Dirichlet) boundary condition with ξt. Thus, we
write the model as

Xt+1 = Ft(Xt) +Wt +Ht

Vt = Ũt(Xt) + et + qt

where X = (σt,Zt, Ξt)T and where Zt = (zt, zt−1)
T and Ξt =

(ξt, ξt−1)
T. Thus with respect to the contact impedances and boun-

day conditions, the evolution model is of the second order, but can
be written as a first order model with respect to the augmented
variables Zt and Ξt. Furthermore, Wt and Ht are the augmented
processes, see [IV] for the details on the construction of the models
and statistics.

In all above models, the observation model may be explicitly
time-varying, since a different set of current patterns may be in-
jected at time t. This is the case in [IV]. In [II,III], however, we deal
with hydrogeophysical problems in which the time rate of change
of the hydrogeophycial process such as saturation is typically in
hours, so that all current patterns can be injected consecutively and
can be assumed to correspond to the same target.

Finally, we note that it is possible also to decompose a single en-
tity into two components, for example, ξt = ξ1

t + ξ2
t and the estimate

ξ1
t while (the contribution of) ξ2

t is embedded in the approximation
error processes, as was done in [62].

4.5 THE DOMAIN TRUNCATION PROBLEM

If the computational domain is truncated to include only the region
of interest, the truncation boundaries are artificial and no standard
deterministic model could be posed. A standard choice in such a
case woud be to pose homogeneous Neumann conditions on the
truncation boundaries and hope that the current densities are more
or less vanishing on the boundary ∂Ω. The size of the computa-
tional domain that would approximately guarantee that the current
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densities vanish, however, can be quite large, roughly 2-3 times the
distance of the furthermost electrodes [86]. Thus, in a borehole ge-
ometry, in which the region of interest is the domain between the
boreholes, the safe computational domain (using Neumann condi-
tions) is around 30-50 times the size of the actual region of interest.

The reason for truncation is, of course, the computational com-
plexity but also stability of the inversion approach. The latter is
particularly central in the case of many regularization approaches
but also if improper prior models are used.

If homogeneous Neumann conditions are used and the compu-
tational domain is too small, reflection-type echoes appear in the
reconstructions. these mask all actual sructures near the bound-
ary of the computatonal domain. Furthermore, the edges tend to
be overcompensated towards the center of the domain, which basi-
cally destroys any attempts at absolute imaging.

In [I], we deal with this problem, and construct an inhomo-
geneous Markov random field [87] in a large domain Ω̄, on the
boundary of which it is safe to assume Neumann conditions. The
approximation errors are computed as the discrepancy of the pre-
dicted measurement between the large domain and a small domain
Ω which is used as the basis of the forward model in the likelihood
model.

We note that it is also possible to model the truncation bound-
aries with the so-called Dirichlet-to-Neumann (DtN) operator, as
was done in [88] in which the conductivity distribution was mod-
eled as spatially known (or as a constant) outside the region of
interest. It is to be noted that the DtN operator depend only on the
conductivity outside the region of interest. The stochastic version of
the DtN approach is currently being considered [89]. In the context
of image processing, the problem of unknown boundary conditions
and marginalization over these uncertainties was considered in [90].
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5 Tomographic imaging of
unsaturated flows

5.1 RELEVANT TOMOGRAPHIC MODALITIES

Monitoring subsurface systems and their temporal changes is a cen-
tral task in understanding of hydrological processes and in the use
and planning of, for example, use of water resources. Technically,
hydrological processes are roughly divided into saturated and un-
saturated (or vadoze) processes. The former are driven by pressure
while the latter are mainly driven by capillary processes.

While the mathematical model that is commonly used to model
the flows in the saturated zone, is a simple linear diffusion model,
the set of models that govern the vadoze zone are both nonlinear
and discontinuous. As for measurement modalities, the saturated
zone is often observed directly through water level in measurement
wells (referred to as ”head”). In the vadoze zone, such direct mea-
surements are not possible in practice.

Electrical resistance tomography (ERT) has been used to moni-
tor time- and space-varying targets such as water content distribu-
tions and solute concentrations [91–95], hydrological barriers [96],
transport of tracers [53, 97, 98], leakage from underground tanks
[99], remediation processes [100], and changes in resistivity caused
by rainfall [101]. Furthermore, ERT and ground penetrating radar
(GPR) have been combined to perform joint inversion to yield sig-
nificantly enhanced water content estimates [102].

The value of constraining ERT models with hydrological pro-
cess modeling is increasingly recognized [103]. Hydrogeophysical
data fusion approaches within a stochastic framework that com-
bines primary and secondary data of different types and iteratively
updates state estimates, unsaturated hydraulic properties, and the
related covariance structures, have been used in sequential (nonsta-
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tionary) inversion of ERT data [95, 104, 105]. We note, again, that
most studies take the evolution models as deterministic and thus
accurate.

5.2 RICHARD’S AND ARCHIE’S MODELS

The evolution of water saturation in unsaturated porous media is
usually modeled with the Richards equation [106]:

φ
∂S
∂t

+∇ ·
[

K(S)
ρwg

∇Pc(S)− K(S)ẑ
]
= 0. (5.1)

Here, φ is the porosity, S is the water saturation, K and Pc are the
unsaturated hydraulic conductivity and the capillary pressure, re-
spectively, both nonlinear functions of water saturation, ρw is the
water density, g is the gravitational constant, and ẑ is the unit vec-
tor, positive upward. The hydraulic conductivity is given by

K = k
krel(S)ρwg

μw
(5.2)

where k is the absolute permeability, krel is the relative permeability
(a nonlinear function of water saturation S), and μw is the dynamic
viscosity of water. For the relative permeability krel and capillary
pressure Pc we use the parametric representation given by the van
Genuchten model [107]:

Pc = −α−1(S−1/m
e − 1)1−m, (5.3)

krel =
√

Se(1 − (1 − Sm−1

e )m)2, (5.4)

Se =
S − Swr

1 − Swr
(5.5)

where m and α are soil-specific parameters, Se is the effective water
saturation, and Swr is the residual water saturation.

In the above, the saturation depends on both space and time.
The relative permeability depends on space and time only via the
saturation, but the parameters (k, ρw, α, m, ) are spatially dependent.
In particular, the absolute permeability is unknown and usually
covers several orders of magnitude.
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The Archie’s model is usualy employed as the petrophysical
model that relates other parameters to conductivity:

σ(S) = σwφbSn

where σw is the conductivity of the liquid phase (water and soluble
ions), b is the cementation index and n is the saturation index. Both
b and n depend on the type of soil and are thus spatially dependent.

5.3 STATE SPACE MODEL FOR UNSATURATED FLOW

Geophysical ERT data that are sensitive to changes in fluid proper-
ties or fluid saturations have been proven effective for monitoring
spatial and temporal changes in subsurface conditions. For exam-
ple, the sensitivity of the bulk electrical conductivity to water satu-
ration enables the use of electrical resistance tomography (ERT) to
monitor water in variably saturated soils in the vadose zone [108].

Kalman filters have seen widespread application in hydrogeo-
physics in prediction of water resources and estimation of aquifer
characteristics since the 70’s [109, 110], see also the review in [111].
These studies have almost exclusively treated saturated cases in
which the water is driven by pressure. The measurements have
mostly been direct well (head) measurements, so that the Kalman
filter has effectively been used to interpolate between the well data
both temporally and spatially. Mildly ill-posed non-diffuse mea-
surement modalities, such as ray-tracing ground penetrating radar
(GPR) have also been studied in relation with saturated cases [111].

The evolution models for the vadose, or unsaturated, zone are
considerably more nonlinear and computationally more involved
than models for the saturated zone. Hydrogeophysical applications
involving evolution models and ERT have recently been discussed
in [98] and [112]. Cross-borehole ERT was used earlier to image
the resistivity distribution of the vadose zone before and during
infiltration experiments [91].

In the earlier nonstationary inversion approaches [95, 104, 105],
the evolution models were assumed to be deterministic, and no
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statistical models were employed to comply with the approxima-
tive nature the models. In [II], the evolution model was taken as
a stochastic process and the approximation error processes were
modeled according to the assumed/modeled uncertainty of the
secondary unknowns. Full approximate marginalization was em-
ployed. As the most important result in this feasibility study, the
approximate posterior covariances were feasible, that is, the true
values were within 2 standard deviations of the state estimates.
Naturally, the sequential state estimates were superior to the snap-
shot estimates which were computed without an evolution model.

5.4 IMPORTANCE SAMPLING UPDATING OF THE

APPROXIMATION ERROR MODEL

With stationary uncertainties, such as the permeability when the
saturation is considered as the primary unknown, the initial, or
prior, uncertainty can sometimes be considerable. With the primary
(estimated) unknowns, the initial uncertainty is naturally decreased
as the measurements are accumulated. But with the standard ap-
proximation error approach, the posterior uncertainty of the sec-
ondary unknowns is not updated. With some nonstationary prob-
lems such as the hydrogeological experiments, the covariance of the
approximation errors can increase very fast with time.

In [III], this problem was addresses by employing an impor-
tance sampling type approach to update the approximation error
means and covariances as measurement data is accumulated. Roughly
speaking, the standard approximation error approach uses the un-
conditional normal models ht ∼ N (E(ht), cov (ht)) and
qt ∼ N (E(qt), cov (qt)), while the importance sampling modifica-
tion employs the corresponding conditional normal models ht ∼
N (E(ht|Dt), cov (ht|Dt)) and qt ∼ N (E(qt|Dt), cov (qt|Dt)), where
Dt = (V1, . . . , Vt). At first sight, this seems a plausible but not
a computationally feasible idea. It turns out, however, that if the
actual ensemble of precomputed approximation errors are stored,
the importance weights and thus the conditional means and covari-
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ances are very efficient to compute. See [III] for the details.
It is to be noted that while the permeability distribution is not

directly estimated during the state estimation process, the impor-
tance weights can also be used to approximate the actual perme-
ability.
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6 Process tomography

Process tomography, in general, refers to tomographic problems
that are encountered in chemical process industry, mining enrich-
ment, oil industry, pulp and paper production, food processing and
other such industries. We refer to [4,5] for reviews on methods and
applications.

Technically, most process tomograhic problems are nonstation-
ary, but often the rate of change of the target is slow enough to
enable the use of stationary reconsruction algorithms. In spite of
this, if feasible evolution models are consructed, the estimates will
almost invariably be better than with snaphot estimates.

Although the geometry process pipelines and vessels is mostly
accurately known, other uncertainties may still be significant enough
to destroy absolute estimates unles they are modelled properly.
Thus, most practical applications still today are using difference
imaging type approaches.

The state of the art approaches that are relevant to process to-
mography and nostationary inverse problems have already been
reviewed in Section 2.2, see also [30]. In this chapter, we construct
the state space model that enables one to use a single electrode layer
sensor and to break the related unidentifiability problem. The fo-
cus is on constructing feasible models for the nonstationary contact
impedances and input boundary conditions. The details are given
in [IV].

6.1 STOCHASTIC CONVECTION-DIFFUSION MODELS

In what follows, we assume that we deal with a stationary (fully
developed) flow, and we take the flow field �v(�r, t) = �v(�r) as known.
For handling of nonstationary unknown velocity fields, see, for ex-
ample, [45, 62].

The evolution of concentration distributions of some substance

Dissertations in Forestry and Natural Sciences No 82 43



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

in a flowing fluid can be described with the convection-diffusion
(CD) model

∂c(�r, t)
∂t

= −�v · ∇c(�r, t) +∇ · κ∇c(�r, t), �r ∈ Ω, (6.1)

where c(�r, t) is the concentration distribution, �v is the velocity field
and κ is the diffusion coefficient. Possible volume sources are mod-
elled by adding a separate source term to eq. (6.1). However, vol-
ume sources do not typically exist in pipe segments intended for
conventional mass transport. To complete the CD model, we pose
the following boundary conditions:

c(�r, t) = cin(�r, t), �r ∈ ∂Ωinflow (6.2)
∂c(�r, t)

∂n
= 0, �r ∈ ∂Ω \ ∂Ωinflow (6.3)

where ∂Ωinflow is the inflow boundary. In continuous process mon-
itoring, the initial conditions are irrelevant.

Assuming that the relation between the conductivity and con-
centration can be described with an affine model, the evolution
model for the conductivity and the boundary conditions are

∂σ(�r, t)
∂t

= −�v · ∇σ(�r, t) +∇ · κ∇σ(�r, t), �r ∈ Ω, (6.4)

σ(�r, t) = ξ̄(�r, t), �r ∈ ∂Ωinflow (6.5)
∂σ(�r, t)

∂n
= 0, �r ∈ ∂Ω \ ∂Ωinflow. (6.6)

The finite element implementation of the convection-diffusion
model (6.1-6.3) or (6.4-6.6) has been described in detail in [60], and
it leads to the update equation

σ̃t+1 = Aσ̃t + Zξt + Rξt+1 + ht, (6.7)

where A, Z and R are the matrices resulting from the FEM scheme,
ξt ∈ RNin contains the conductivities at nodes located at the inflow
boundary ∂Ωinflow and σ̃ ∈ RN−Nin contains the conductivities at
all other nodes. The state noise term ht is the approximation error
process and here accounts mainly for the model reduction effects.
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6.2 STATE SPACE MODEL WITH UNKNOWN TIME-VARYING

BOUNDARY DATA AND CONTACT IMPEDANCES

In this section, we decompose the contact impedance and input
boundary codition processes into two subprocesses and construct
second order Markov processes for all these processes. Standard
augmentation is then used to turn the models into a first order
Markov process.

The unknown conductivity distribution at the inflow boundary
is divided into two parts as

ξt = st1Nin + ut, (6.8)

where the first term on the right-hand side is a spatially homoge-
neous term (st ∈ R and 1Nin ∈ RNin is a column vector of ones) and
ut represents spatial inhomogeneities in the conductivity distribu-
tion at ∂Ωinflow. The evolution of the homogeneous part is modelled
with a second-order Markov model in order to guarantee smoother
temporal behaviour than with first-order models. The model is of
the form

st+1 = α1st + α2st−1 + ηt+1, (6.9)

where α1 and α2 are fixed model parameters and the noise term
ηt+1 ∼ N(0, Γη) (for all t) is the innovation process that determines
the variance of st. Temporal changes of the inhomogeneous part are
described with another second-order Markov model as

ut+1 = β1ut + β2ut−1 + εt+1, (6.10)

where β1 and β2 are fixed parameters and εt+1 ∼ N(0, Γε) (for all t)
is another innovation process.

In addition to the evolution models related to conductivity dis-
tribution, we specify an evolution model also for the contact impedances.
Again, we employ a second-order Markov model of the form

zt+1 = γ1zt + γ2zt−1 + νt+1, (6.11)

with model parameters γ1 and γ2 and νt+1 ∼ N(0, Γν) for all t.
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By combining all the above models we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃t+1
ut+1

ut
st+1

st
zt+1

zt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A Z + β1R β2R (Z + α1R)1Nin α2R1Nin 0 0
0 β1 INin β2 INin 0 0 0 0
0 INin 0 0 0 0 0
0 0 0 α1 α2 0 0
0 0 0 1 0 0 0
0 0 0 0 0 γ1 INel γ2 INel

0 0 0 0 0 INel 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃t
ut

ut−1
st

st−1
zt

zt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mη

et+1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
I
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mε

εt+1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1Nin

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mη

ηt+1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
I
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mν

νt+1, (6.12)

which system we denote by

θt+1 = Fθt + ωt+1. (6.13)

The marginaliation over the input boundary conditions is fea-
sible, but not over the contact impedances. Therefore, we estimate
the contact impedances simultaneously with the conductivity σ̃t.

Assuming that the noise processes can be approximated as mu-
tually independent, the state noise ωt is Gaussian with zero mean
and time-invariant covariance, which can be written in the form
Γω = MeΓe MT

e + MεΓε Mε + MηΓη MT
η + MνΓν MT

ν , see [IV] for de-
tails..

6.3 THE SINGLE ELECTRODE LAYER PROBLEM

The symmetry problem that is related to electrical impedance to-
mography (EIT) imaging with a single electrode layer is the follow-
ing. Consider a symmetric volume Ω ⊂ R3 with symmetry plane
x3 = 0. Let all electrodes be placed on the symmetry plane. Let
σ(�r) > 0 be an arbitrary conductivity distribution within the vol-
ume and let V be the measurements. Then, irrespective of the em-
ployed measurement model, we have V(σ(x1, x2, x3)) = V(σ(x1, x2,−x3)),
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which shows that the conductivity is not identifiable in the classical
sense.

If we have prior information or models that are nonsymmetric,
the problem might be solvable, but these are seldom realistic, espe-
cially in a nonstationary setting. One of the few interesting cases is
the one in which the conductivity is assumed to be translationally
invariant in x3-direction, leading to the so-called 21/2-dimensional
problem [113,114]. In this approach, the invariability in x3-direction
enables the transformation of the governing 3D model into a 2D
model.

In [IV], the unidentifiability of the symmetry problem is bro-
ken by the evolution model. We note that in earlier studies, such
as [56], the state space model does not need to be as involved as
the present one. The reason is that with standard electrode place-
ment using several electrode rings/layers, the information is richer
and in principle the problem is identifiable. The main (industrial)
motivations for using a single electrode ring sensor are that such a
sensor can easily be placed in a pipeline when multilayer sensors
would take too much space and such a sensor is a cost- effective
manufacturable.
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7 Conclusions

Inverse problems can be loosely characterized as problems that tol-
erate poorly measurement and modeling errors. While measure-
ment errors are often easy, or at least straightforward to model and
to take into account in the overall computational model, the model-
ing errors have received very little attention before the mid 2000’s.
The main reason for this is that handling the modeling errors is
only feasible in the Bayesian framework for inverse problems, while
the majority of the inverse problems community favors the deter-
ministic framework for inverse problems. Furthermore, the model-
ing of uncertainties that are related to partial differential equations
and the initial-boundary value problems, require elements in the
PDE theory, their numerical methods and Bayesian statistics, and
exact analytical treatment is usually evasive. Thus, many of the
well-known, and even practically ubiquitous, problems such as the
boundary truncation problem have received very little attention.

Furthermore, when all the respective uncertainty models have
been constructed, the overall computational model would typically
be computationally too complex to allow for practical implementa-
tions that are feasible for the respective applications. Thus, stan-
dard Bayesian inference approaches based on, for example, Markov
chain Monte Carlo are usually not considered, except in academic
investigations. For example, if process tomography is used in in-
dustrial control and one is dealing with fast flows, the 3-dimensional
reconstructions have to be carried out typically in a time frame of
1-10 milliseconds. And furthermore, the reconstructions (state esti-
mates) may drive (an optimal) controller and thus feasible estimates
for the second order statistics is also needed. Highly approximate
computational models have thus to be used, but the overall model
needs to be a feasible one.

The introduction of the approximation error approach in the
mid 2000’s provided an overall framework that made it feasible to
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model all uncertainties and to simultaneously use drastically re-
duced order models that are feasible for resource limited problems.
Furthermore, although the setting up of the overall model may be
a tedious task, it is often a straightforward one. In particular, with
problems in which the uncertainties don’t facilitate using very low
dimensional parametrizations, the approximation error approach
may be the only practically feasible approach.

In this thesis, we have dealt with some of the most common
uncertainties that are encountered with inverse problems, such as
the boundary truncation problem and handling unknown uninter-
esting distributed parameters. Furthermore, we have considered
both stationary and nonstationary problems. As a result of this
thesis, the author and his coworkers have been able to realize the
first industrial mass production of EIT systems that are capable of
absolute imaging in an actual industrial setting, at least according
to the author’s knowledge. This work was carried out in Numcore
Ltd, which won several national and international awards during
its four year history. When the products were developed to an
industrialy relevant status, other types of uncertainties were also
considered, but the framework was mostly the same that is used in
this thesis.

While the approach facilitates straightforward treatment of any
number of simultaneous uncertainties and model reduction, the ap-
proach, naturally, cannot work miracles. The biggest drawback is
that, since analytical results cannot usually be derived, one simply
has to try how far one can go with the approach. This will often
turn out to be quite a tedious task. Nevertheless, there is art in ad-
dition to the science, and experience in setting up the approach for
different problems will in most cases make it a feasible task to set
it up for the next problem.

50 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[1] A.C. Kak and M. Slaney. Principles of Computerized Tomographic
Imaging. IEEE Press, 1988.

[2] Y. Rubin and S. Hubbard. Hydrogeophysics. Springer, Nether-
lands, 2005.

[3] J. Bear. Dynamics of fluids in porous media. Dover Publications,
Inc., NY, 1979.

[4] R. A. Williams and M. S. Beck. Process Tomography: Principles,
Techniques and Applications. Butterworth-Heinemann, Oxford,
1995.

[5] D. Scott and H. McCann, editors. Handbook of Process Imaging
for Automatic Control. CRC Press, 2005.

[6] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of
Inverse Problems. Kluwer, 2000.

[7] C. W. Groetsch. Inverse Problems in the Mathematical Sciences.
Vieweg, 1993.

[8] A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posed problems.
Winston & Sons, Washington, DC, 1977.

[9] V. A. Morozov. Methods for Solving Incorrectly Posed Problems.
Springer Verlag, New York, 1984.

[10] D. L. Phillips. A technique for the numerical solution of cer-
tain integral equations of the first kind. J Assoc Comput Mach,
9:84–97, 1962.

[11] S. Twomey. On the numerical solution of Fredholm integral
equations of the first kind by the inversion of the linear sys-
tem produced by quadrature. J Assoc Comput Mach, 10:97–101,
1963.

Dissertations in Forestry and Natural Sciences No 82 51



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

[12] M. Hanke and P. C. Hansen. Regularization methods for
large-scale problems. Surveys math Ind, 3:253–315, 1993.

[13] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems.
Numerical Aspects of Linear Inversion. SIAM, 1998.

[14] J.P. Kaipio and E. Somersalo. Statistical and Computational In-
verse Problems. Springer-Verlag, 2005.

[15] A. Tarantola. Inverse Problem Theory and Methods for Model
Parameter Estimation. SIAM, Philadelphia, 2004.

[16] D. Calvetti and E. Somersalo. An Introduction to Bayesian Scien-
tific Computing - Ten Lectures on Subjective Computing. Springer,
2007.

[17] M. Hanke. Conjugate Gradient Type Methods for Ill-posed Prob-
lems. Longman Scientific & Technical, 1995.

[18] M. Vauhkonen, J.P. Kaipio, E. Somersalo, and P.A. Kar-
jalainen. Electrical impedance tomography with basis con-
straints. Inverse Probl, 13:523–530, 1997.

[19] M. Vauhkonen, P.A. Karjalainen, and J.P. Kaipio. A Kalman
filter approach to track fast impedance changes in electrical
impedance tomography. IEEE Trans Biomed Eng, 45:486–493,
1998.

[20] A. Tarantola and B. Valette. Inverse problems = quest for
information. J Geophys, pages 159–170, 1982.

[21] J. Kaipio and C. Fox. The Bayesian framework for inverse
problems in heat transfer. Heat Transfer Eng, 32:718–753, 2011.

[22] C.P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer, 2004.

[23] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov
Chain Monte Carlo in Practice. Chapmann & Hall, 1996.

52 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[24] J. Kaipio and V. Kolehmainen. Approximate marginalization
over modeling errors and uncertainties in inverse problems.
In P. Damien, N. Polson, and D. Stephens, editors, Bayesian
Theory and Applications. Oxford University Press, 2012. In
Press.

[25] J. P. Kaipio and E. Somersalo. Nonstationary inverse prob-
lems and state estimation. J. Inv. Ill-Posed Problems, 7:273–282,
1999.

[26] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte
Carlo Methods in Practice. Springer, 2001.

[27] R.E. Kalman. A new approach to linear filtering and predic-
tion problems. Trans. ASME, J. Basic Eng., 82D(1):35–45, 1960.

[28] R. E. Kalman and R. S. Bucy. New results in linear filtering
and prediction theory. Trans. ASME J Basic Engineering, 83:95–
108, 1961.

[29] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice
Hall, 1979.

[30] J.P. Kaipio, S. Duncan, A. Seppanen, E. Somersalo, and
A. Voutilainen. State estimation. In D. Scott and H. Mc-
Cann, editors, Handbook of Process Imaging for Automatic Con-
trol, pages 207–235. CRC Press, 2005.

[31] J. Durbin and J. Koopman. Time Series Analysis by State Space
Methods. Oxford University Press, 2001.

[32] J. Kaipio and E. Somersalo. Nonstationary inverse problems
and state estimation. Inverse and Ill-Posed Problems, 7:273–282,
1999.

[33] T. Dyakowski. Tomography in a process system. In R.A.
Williams and M.S. Beck, editors, Process tomography. Butter-
worth Heinemann, 1995.

Dissertations in Forestry and Natural Sciences No 82 53



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

[34] K. Y. Dorofeev and A. G. Yagola. The method of extending
compacts and a posteriori error estimates for nonlinear ill-
posed problems. Inverse Ill-Posed Probl, 12:627–636, 2004.

[35] J. Heino and E. Somersalo. A modelling error approach
for the estimation of optical absorption in the presence of
anisotropies. Phys Med Biol, 49:4785–4798, 2004.

[36] J. Heino, E. Somersalo, and J. P. Kaipio. Compensation for ge-
ometric mismodelling by anisotropies in optical tomography.
Optics Express, 13(1):296–308, 2005.

[37] A. Nissinen, V. Kolehmainen, and J. P. Kaipio. Compensa-
tion of modelling errors due to unknown domain boundary
in electrical impedance tomography. IEEE Trans. Med. Im.,
30(2):231–242, 2011.

[38] A. Nissinen, V. Kolehmainen, and J. P. Kaipio. Reconstruction
of domain boundary and conductivity in electrical impedance
tomography using the approximation error approach. Int. J.
Uncertainty Quantification., 1(3):203–222, 2011.

[39] A. Nissinen, L. M. Heikkinen, V. Kolehmainen, and
J. P. Kaipio. Compensation of errors due to discretiza-
tion, domain truncation and unknown contact impedances
in electrical impedance tomography. Meas Sci Technol,
20:doi:10.1088/0957–0233/20/10/105504, 2009.

[40] C.A.A Mota, H.R.B Orlande, M.O.M. Carvalho,
V. Kolehmainen, and J.P. Kaipio. Bayesian estimation of
temperature-dependent thermophysical properties and
boundary heat flux. Heat Transfer Eng, 31:570–580, 2010.

[41] T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen,
M. Schweiger, S. R. Arridge, and J. P. Kaipio. Approxima-
tion error approach for compensating modelling errors be-
tween the radiative transfer equation and the diffusion ap-
proximation in diffuse optical tomography. Inverse Probl,
26:doi:10.1088/0266–5611/26/1/015005, 2010.

54 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[42] W. Mannington and DP. Bullivant MJ. O’Sullivan. Com-
puter modelling of the wairakei-tauhara geothermal system.
Geothermics, 33:401–419, 2004.

[43] V. Kolehmainen, T. Tarvainen, S.R. Arridge, and J.P. Kaipio.
Marginalization of uninteresting distributed parameters in in-
verse problems - application to optical tomography. Int J Un-
certainty Quantification, 2011.

[44] A. Seppänen, M. Vauhkonen, P.J. Vauhkonen, E. Somersalo,
and J.P. Kaipio. State estimation with fluid dynamical evo-
lution models in process tomography – an application to
impedance tomography. Inverse Probl, 17:467–484, 2001.

[45] A. Lipponen, A. Seppänen, and J.P. Kaipio. Nonstationary
inversion of convection-diffusion problems - recovery from
unknown nonstationary velocity fields. Inverse Probl, 2009. In
review.

[46] A. Voutilainen, A. Lehikoinen, A. Lipponen, and M. Vauhko-
nen. A reduced-order filtering approach for 3d dynamical
electrical impedance tomography. Meas Sci Technol, 22:025504,
2011.

[47] D. Alumbaugh, P. Y. Chang, L. Laprocki, J. R. Brainard, R. J.
Glass, and C. A. Rautman. Estimating moisture contents
in the vadose zone using cross-borehole ground penetrating
radar: A study of accuracy and repeatability. Water Resour.
Res., 38(12), 2002.

[48] F. Day-Lewis, K. Singha, and A. M. Binley. Applying petro-
physical models to radar travel time and electrical resistiv-
ity tomograms: Resolution-dependent limitations. J. Geophys.
Res. Solid Earth, 110(B8), 2005.

[49] H. Linde, S. Finsterle, and S. Hubbard. Inversion of hydro-
logical tracer test data using tomographic constraints. Water
Resources Research, 42, 2006.

Dissertations in Forestry and Natural Sciences No 82 55



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

[50] G. A. Oldenborger, P. S. Routh, and M. D. Knoll. Sensitivity
of electrical resistivity tomography data to electrode position
errors. Geophys. J. Int., 163:1–9, 2005.

[51] M. B. Kowalsky, S. Finsterle, and Y. Rubin. Estimating flow
parameter distributions using ground-penetrating radar and
hydrological measurements during transient flow in the va-
dose zone. Adv. in Water Res., 27(6):583–599, 2004.

[52] K. Singha and S. M. Gorelick. Saline tracer visualized with
electrical resistivity tomography: Field scale moment analy-
sis. Water Resour. Res., 41, 2005.

[53] K. Singha and S. M. Gorelick. Effects of spatially variable res-
olution on field-scale estimates of tracer concentration from
electrical inversions using archie’s law. Geophysics, 71(3):G83–
G91, 2006.

[54] R. L. Cooley and S. Christensen. Bias and uncertainty in
regression-calibrated models of groundwater ow in hetero-
geneous media. Adv. Water Resour., 29(5):639656, 2006.

[55] J.-P.Drecourt, H. Madsen, and D. Rosbjerg. Bias aware kalman
lters: Comparison and improvements. Adv. Water Resour.,
29(5):707718, 2006.

[56] A. Seppänen, M. Vauhkonen, P. Vauhkonen, E. Somersalo,
and J.P. Kaipio. Fluid dynamical models and state estimation
in process tomography: Effect due to inaccuracies in flow
fields. Journal of Electronic Imaging, 10:630–640, 2001.

[57] A. Seppänen, M. Vauhkonen, E. Somersalo, and J.P. Kaipio.
State space models in process tomography – approximation
of state noise covariance. Inverse Problems in Science and Engi-
neering, 9(5):561–585, 2001.

[58] A. Lipponen, A. Seppanen, and J.P. Kaipio. Nonstationary
inversion of convection-diffusion problems - recovery from

56 Dissertations in Forestry and Natural Sciences No 82



Bibliography

unknown nonstationary velocity fields. Inverse Probl Imaging,
4:463–483, 2010.

[59] A. Seppänen, L. Heikkinen, T. Savolainen, A. Voutilainen,
E. Somersalo, and J.P. Kaipio. An experimental evaluation
of state estimation with fluid dynamical models in process
tomography. Chemical Engineering Journal, 127:23–30, 2007.

[60] A. Seppanen, M. Vauhkonen, P.J. Vauhkonen, A. Vouti-
lainen, and J.P. Kaipio. State estimation in process tomogra-
phy – Three-dimensional impedance imaging of moving flu-
ids. International Journal for Numerical Methods in Engineering,
73(11):1651–1670, 2008.

[61] A. Seppänen, A. Voutilainen, and J.P. Kaipio. State estima-
tion in process tomography – reconstruction of velocity fields
using EIT. Inverse Problems, 25(8):085009, 2009.

[62] A. Lipponen, A. Seppanen, and J.P. Kaipio. Reduced order
estimation of nonstationary flows with electrical impedance
tomography. Inverse Probl, 26:074010, 2010.

[63] J. Kaipio and E. Somersalo. Statistical inverse problems: dis-
cretization, model reduction and inverse crimes. J Comput
Appl Math, 198:493–504, 2007.

[64] S.R. Arridge, J.P. Kaipio, V. Kolehmainen, M. Schweiger,
E. Somersalo, T. Tarvainen, and M. Vauhkonen. Approxima-
tion errors and model reduction with an application in optical
diffusion tomography. Inverse Probl, 22:175–195, 2006.

[65] A. Nissinen, L. M. Heikkinen, and J. P. Kaipio. Approxi-
mation errors in electrical impedance tomography - an ex-
perimental study. Meas Sci Technol, 19:doi:10.1088/0957–
0233/19/1/015501, 2008.

[66] J.M.J. Huttunen and J.P. Kaipio. Approximation errors in
nostationary inverse problems. Inverse Problem and Imaging,
1(1):77–93, 2007.

Dissertations in Forestry and Natural Sciences No 82 57



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

[67] J.M.J. Huttunen and J.P. Kaipio. Approximation error analy-
sis in nonlinear state estimation with an application to state-
space identification. Inverse Problems, 23:2141–2157, 2007.

[68] J.M.J. Huttunen and J.P. Kaipio. Model reduction in state
identification problems with an application to determination
of thermal parameters. Applied Numerical Mathematics, 59:877–
890, 2009.

[69] J.M.J. Huttunen, A. Lehikoinen, J. Hamalainen, and J.P. Kai-
pio. Importance filtering approach for the nonstationary ap-
proximation error method. Inverse Probl, 26:125003, 2010.

[70] H. K. Pikkarainen. State estimation approach to nonstation-
ary inverse problems: discretization error and filtering prob-
lem. Inverse Problems, 22:365–379, 2006.

[71] J. A. Vrugt, B. A. Robinson, and V. V. Vesselinov. Improved
inverse modeling for flow and transport in subsurface me-
dia: Combined parameter and state estimation. Geophysical
Research Letters, 32, 2005.

[72] J. A. Vrugt, C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M.
Verstaten. Improved treatment of uncertainty in hydrologic
modeling: Combining the strengths of global opitimization
and data assimilation. Water Resour. Res., 41, 2005.

[73] J. A. Vrugt and S. P. Neuman. Introduction to the special
section in vadose zone journal: parameter identification and
uncertainty assessment in the unsaturated zone. Vadose Zone
Journal, 5:915–916, 2006.

[74] D. C. Barber and B. H. Brown. Applied potential tomography.
J. Phys. E:Sci. Instrum, 17:723–733, 1984.

[75] M. Cheney, D. Isaacson, J.C. Newell, S. Simske, and J. Goble.
NOSER: An algorithm for solving the inverse conductivity
problem. Int J Imaging Systems and Technology, 2:66–75, 1990.

58 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[76] J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhko-
nen. Statistical inversion and Monte Carlo sampling methods
in electrical impedance tomography. Inverse Probl, 16:1487–
1522, 2000.

[77] J. Mueller and S. Siltanen. Direct reconstructions of conduc-
tivities from boundary measurements. SIAM J Sci Comput,
24(4):1232–1266, 2003.

[78] J.P. Kaipio, A. Seppänen, E. Somersalo, and H. Haario. Pos-
terior covariance related optimal current patterns in electrical
impedance tomography. Inverse Probl, 20:919 – 936, 2004.

[79] D. Baroudi, J.P. Kaipio, and E. Somersalo. Dynamical electric
wire tomography: Time series approach. Inverse Probl, 14:799–
813, 1998.

[80] G. Evensen. Sequential data assimilation with a non-linear
quasigeostrophic model using monte carlo methods to fore-
cast error statistics. J. Geophys. Res., 99(C5), 1994.

[81] K.-S. Cheng, D. Isaacson, J.C. Newell, and D.G. Gisser. Elec-
trode models for electric current computed tomography. IEEE
Trans Biomed Eng, 36:918–924, 1989.

[82] M. Cheney E. Somersalo and D. Isaacson. Existence and
uniqueness for electrode models for electric current com-
puted tomography. SIAM J. Appl. Math., 52(4):1023–1040,
1992.

[83] M. Cheney, D. Isaacson, and J.C. Newell. Electrical impedance
tomography. SIAM review, 41(1):85–101, 1999.

[84] M. Vauhkonen. Electrical Impedance Tomography and Prior In-
formation. PhD thesis, University of Kuopio, Kuopio, Finland,
1997.

[85] T. Tarvainen, M. Vauhkonen, T. Savolainen, and J. P. Kai-
pio. Boundary element method and internal electrodes in

Dissertations in Forestry and Natural Sciences No 82 59



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

electrical impedance tomography. Int. J. Numer. Methods Eng.,
50(4):809–824, 2004.

[86] P.J. Vauhkonen, M. Vauhkonen, and J.P. Kaipio. Errors
due to the truncation of the computational domain in static
three-dimensional electrical impedance tompography. Phys-
iol. Meas, 21:125–135, 2000.

[87] H. Rue and L. Held. Gaussian Markov Random Fields: Theory
and Applications. Chapman and Hall, 2005.

[88] Jonsson E. Electrical conductivity reconstruction using non-
local boundary conditions. SIAM J Appl Math, 59:1582, 1999.

[89] D. Calvetti, P Hadwin, J.M.J. Huttunen, J.P. Kaipio, and
E. Somersalo. Unknown boundary data in electrical
impedance tomography problems. In review, 2012.

[90] D. Calvetti, J. P. Kaipio, and E. Somersalo. Aristotelian prior
boundary conditions. International Journal of Mathematics,
1:63–81, 2006.

[91] W. D. Daily, A. L. Ramirez, D. J. LaBrecque, and J. Nitao.
Electrical resistivity tomography of vadose water movement.
Water Resour. Res., 28:1429–1442, 1992.

[92] S. K. Park. Fluid migration in the vadoze zone from 3-d in-
version of resistivity monitoring data. Geophysics, 63:41–51,
1998.

[93] A. Binley, G. Cassiani, R. Middleton, and P. Winship. Va-
dose zone flow model parametrisation using cross-borehole
radar and resistivity imaging. Journal of Hydrology, 267:147–
159, 2002.

[94] H.K. French, C. Hardbattle, A. Binley, P. Winship, and
L. Jakobsen. Monitoring snowmelt induced unsaturated flow
and transport using electrical resistivity tomography. Journal
of Hydrology, (267):273–284, 2002.

60 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[95] T.-C. J. Yeh, S. Liu, R. J. Glass, K. Baker, J. R. Brainard,
D. Alumbaugh, and D. LaBrecque. A geostatistically based
inverse model for electrical resistivity surveys and its appli-
cations to vadose zone hydrology. Water Resour. Res., 38(12),
2002.

[96] W. D. Daily and A. L. Ramirez. Electrical imaging of engi-
neered hydraulic barriers. Geophysics, 65(1):83–94, 2000.

[97] L. Slater, A. Binley, W. Daily, and R. Johnson. Cross-hole elec-
trical imaging of a controlled saline tracer injection. J. Appl.
Geophys., 44:85–102, 2000.

[98] A. Kemna, J. Vanderboroght, B. Kulessa, and H. Vereecken.
Imaging and characterisation of subsurface solute transport
using electrical resistivity tomography (ert) and equivalent
transport models. Journal of Hydrology, 267(3):174–198, 2002.

[99] A. Ramirez, W. Daily, A. Binley, D. LaBrecque, and D. Roe-
lant. Detection of leaks in underground storage tanks us-
ing electrical resistance methods. J. Environ. Engng Geophys.,
1:189–203, 1996.

[100] A. Ramirez, W. Daily, D. LaBrecque, E. Owen, and D. Ches-
nut. Monitoring an underground steam injection process us-
ing electrical resistance tomography. Water Resour. Res., 29:73–
87, 1993.

[101] Q. Y. Zhou, J. Shimada, and A. Sato. Three dimensional spa-
tial and temporal monitoring of soil water content using elec-
trical resistivity tomography. Water Resour. Res., 37:273–285,
2001.

[102] N. Linde, A. Binley, A. Tryggvason, L. B. Pedersen, and A. Re-
vil. Improved hydrogeophysical characterization using joint
inversion of crosshole electrical resistance and ground pene-
trating radar traveltime data. Water Resour. Res., (42), 2006.

Dissertations in Forestry and Natural Sciences No 82 61



Anssi Lehikoinen: Modeling Uncertainties in Process Tomography and
Hydrogeophysics

[103] T.P.A. Ferre, A. C. Hinnell, and J. B. Blainey. Examining
the potential for inferring hydraulic properties using surface-
based electrical resistivity during infiltration. Leading Edge,
6(25):720723, 2006.

[104] J. Zhang and T.C.J. Yeh. An iterative geostatistical inverse
method for steady flow in the vadose zone. Water Resour.
Res., (33):6371, 1997.

[105] D.L. Hughson and T.C.J. Yeh. An inverse model for threed-
imensional flow in variably saturated porous media. Water
Resour. Res., (36):829839, 2000.

[106] L.A. Richards. Capillary conduction of liquids through
porous medium. Physic, 1:318–333, 1931.

[107] M. T. van Genuchten. A closed-form equation for predicting
the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc.
Am. J., 44:892–898, 1980.

[108] G. E. Archie. The electrical resistivity logs as an aid deter-
mining some reservoir characteristics. 146:54–61, 1942.

[109] D.B. McLaughlin. Application of Kalman filtering to groundwater
basin modelling and prediction. IIASA Proc. Ser, Edited by: EF.
Wood, Pergamon, New York, 1976.

[110] P.K. Kitanidis. A unified approach to the parameters estimation
of groundwater models. Massachusetts Institute of Technology,
MSc Thesis, 1976.

[111] M.J. Eppstein and D.E. Dougherty. Simultaneous estimation
of transmissivity values and zonation. Water Resour. Res.,
(32):33213336, 1996.

[112] A. Furman, T. Ferre, and A. Warrick. Optimization of ert
surveys for monitoring transient hydrological events using
perturbation sensitivity and genetic algorithms. Vadose Zone
Journal, 3:12301239, 2004.

62 Dissertations in Forestry and Natural Sciences No 82



Bibliography

[113] Y.Z. Ider, N.G. Gencer, E. Atalar, and H. Tosun. Electrical
impedance tomograhy of translationally uniform cylindrical
objects with general cross-sectional boundaries. IEEE Trans
Med Imaging, 9:49–59, 1990.

[114] K. Jerbi, W.R.B. Lionheart, P.J. Vauhkonen, and M. Vauhko-
nen. Sensitivity matrix and reconstruction algorithm for eit
using axial uniformity. Physiol Meas, 21:61–66, 2000.

Dissertations in Forestry and Natural Sciences No 82 63



Publications of the University of Eastern Finland 
Dissertations in Forestry and Natural Sciences

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

isbn 978-�952-�61-�0882-7

Anssi Lehikoinen

Modeling Uncertainties in Process
Tomography and Hydrogeophysics

This thesis considers tomographic 

problems, which are one of the 

largest classes of inverse problems. 

In particular we consider Electrical 

Impedance Tomography (EIT) which 

probes the unknown object via 

electric fields. As specific technical 

model uncertainties, we consider 

the domain truncation problem and 

the use of approximated models to 

facilitate efficient computations. As 

particular applications, we consider 

problems in hydrogeophysics and 

process tomography.
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