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Abstract 

The paper analyzes the efficiency of the betting markets in Finnish 
harness horse racing. We first present the basic properties of the 
betting markets. We focus on the organization structures, the market 
efficiency, and the well-known inefficiencies. Next we review 
different methods to test the market efficiency. An alternative method 
proposed based on actual and on theoretical net returns is introduced. 
Finally the betting market efficiency is tested with different tests using 
database accumulated from the Finnish harness horse race tracks. 
Robustness of results is controlled with bootstrap methods. The results 
imply that the markets are semi-strong efficient and characterised by 
the favourite long-shot bias. However, consistent evidence for other 
game market anomalies like end of the day effect or gambler’s fallacy 
is not found.  
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1. Introduction 

Gaming is a large business, and the general attitudes for gambling have been liberated from the 

curtain of sin. Nowadays, betting is more acceptable and it can be seen as entertainment. However, 

the political discussion about the market structures in gaming is passionate. Typically, in many 

European countries gaming is organized by full legal monopolies. However, the pressure to open 

the market for free competition widens everyday.  

 

Free competition in the betting markets may lead to richer gambling menus and even lower prices at 

least in some gambles. On the other hand, gaming and its problems, such as gambling addictions, 

may easier be controlled by a monopoly. However, we do not take policy approach. Instead, we 

examine how gamblers behave in these markets. 

 

Our first aim is to briefly discuss market efficiency conditions and different testing methods in 

betting markets. Secondly, we introduce an alternative testing method in which the confidence 

intervals for net return rates are calculated with bootstrap methods to secure more appropriate 

statistical testing. Finally, we test how efficient the Finnish harness horse race betting markets are.  

 

The paper is organized as follows. In section 2, we take a look at some the key properties of betting 

markets such as the organization structures, the market efficiency, and the well-known 

inefficiencies. Next, we present the methods used to test the betting market efficiency. Section 4 

includes descriptions of our dataset and assumptions. In section 5, we introduce our method. The 

empirical results from the different test types are presented in section 6. The last section concludes 

the paper.  

 

2. Market Efficiency in Betting Markets 

2.1 How Betting Markets Work? 

There are a lot of similarities between financial markets and gambling markets. For instance, both 

of these markets have a large number of investors or bettors that have an opportunity to access the 

set of information, which may help to predict an outcome of the game. However, there are also 

differences. In the gambling markets bettors do not have an opportunity to sell their ‘ticket’ in a 

secondary market. Moreover, gambling markets constitute an environment that has targeted 

investments and fast profit clearance. This is different compared to the financial markets at least 

some of them. For a more precise discussion of similarities between gambling and financial 

markets, see e.g. Sauer (1998).  
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Although financial and gambling markets are analogous, there exists one conceptual difference: the 

enjoyment of gambling.  Gambling brings positive (enjoyment) consumption for the gamblers and 

they are also prepared to pay for it. However, in both markets gamblers try also to maximize 

(minimize) their profits (losses) or utility. 

 

As consumption of gambling is part of gambling, the gambling markets include both the demand 

and supply side. Gamblers are the consumers that ask for the gambling service. Typically the 

bookies offer game opportunities based on some sport event or in lotteries. Bookies will return the 

gamblers an amount of money that is dependent, at least at some level, on the probability of the 

outcome. There are two main traditions to organize the supply side: pari-mutuel and bookmaker 

mechanism. In pari-mutuel system (or totalizator) gamblers’ winning bets share the pool of all bets. 

Thus, the pool shares constitute the odds for every possible outcome and the odds determine the 

payoffs for the gambler. However, the odds are not directly contractual after betting. For instance, if 

the gambler bets five minutes before closing time, it is possible that the odd varies because of the 

other gamblers’ betting behaviour. Therefore, the final odd and the payoff are fixed when the 

betting is closed. In the pari-mutuel system, the operator takes a share of the pool to cover the costs, 

taxes and profits. This is the so-called take-out rate and it decreases the odds and payoffs. 

Therefore, the established pari-mutuel system is risk-free for the operator. Actually the bettors 

gamble against each other.    

 

The bookmaker system operates somewhat differently. In this system, the bookmaker offers fixed-

odds to the bettor. This means that the bettors know for sure their possible payoffs after 

participating, although the bookmaker can offer different odds after gamblers’ decision. For this 

reason, if the betting volumes go ahead in some direction, the bookmaker tries to equalize the 

betting volumes by changing the odds. Therefore, even the bookmaker offers odds independently, 

the decisions are affected by the gamblers betting behaviour. Due to the bookmaker system, the 

operator has some risk and bettors gamble directly against the bookie. Similarly as in the pari-

mutuel system, the bookmaker’s take-out rate decreases the odds.  

 

In general, both systems are used in horse race track betting. For instance, pari-mutuel system is 

used in the North America, France, Germany, Japan, Hong Kong and Finland. Respectively, the 

betting markets are organized by a bookmaking system at least in the Great Britain and Australia. 

As the odds are inversed winning probabilities adjusted by the take-out rate, the probabilities reflect 

market information. Odds in the pari-mutuel system equal the gamblers’ subjective probabilities. 
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Contrary to this, the bookmaker’s odds reflect both his own and gamblers’ estimations of winning 

probabilities. This builds up the simultaneous supply and demand for a game price in ex-ante sense. 

If all available information used efficiently this “market price” is close to the true ex-post odds, i.e. 

a market is expected to operate efficiently. Now, as we have historical information concerning the 

past game outcomes and odds related to particular horses, we can test in ex-post sense how correct 

these market estimations have been. Thus we can test how efficient or unbiased the horse race 

betting markets are.  

 

2.2 Definition of Market Efficiency 

For now on, we discuss the pari-mutuel horse race track betting in which the market information 

plays a crucial role. Thus, the odds and the bettor’s subjective probabilities refer to the gambling 

market’s estimates of each horse’s chance of winning the race and these odds can be used to 

analyze the betting market efficiency. Market efficiency has several concepts and definitions. Next 

we proceed with the definition by Thaler & Ziemba (1988). The following three definitions of the 

market efficiency (ME) seem appropriate1. 

 

       1. Weak ME:  Does the subjective probability predict the objective probability? 

       2. Semi-strong ME: Do some systematic bets have positive expected value? 

       3. Strong ME:  Does every bet have the same expected value? 

 

In finance, market efficiency analysis is based on the following conditional (rational) expectation 

hypothesis  

                                                      , 0
1 1[ | ]E

t t tP E P+ += Ω

 

where  is the observed market price at next period and 0
1tP+ 1[ |E

tE P+ ]tΩ  is conditional expectation 

(prediction) for it based on the relevant present and past market information . The efficiency 

condition is also formulated in following way 

tΩ

0
1 1[ [ E

t tE P E P+ + | ]]t 0− Ω = , i.e. no systematic prediction 

errors exist. In the context of game markets we can give a similar example that illustrates the basic 

relation between subjective probability and objective probability. The market efficiency conditions 

1 (ME1) and 3 (ME3) can be analyzed with the following simple regression model 

 

                                                 
1 In fact, Thaler and Ziemba (1988) used only conditions 2 and 3.  However, we added the condition 1 for a logical 
clarification. 
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 , 0 1 , i t i t i tObjective probability Subjective probability ,β β ε= + + ,  (2.1) 

                                                   where  ,[ ] 0  for   ,i tE i tε = ∀ . 

 

The condition ME1 is almost trivial as subjective and objective probabilities are highly correlated. 

Thus, if 1 0β > , then we can say that the implicit odds predict in average the true winner in the 

correct direction. Condition ME3 is more informative. If every bet has the same expected value or 

each bet’s expected value is known, then the subjective probability should predict the objective 

probability without bias for , i.e. i∀ 0 0β =  and 1 1β = . Equation (2.1) does not give a direct answer 

to condition ME2. However if it is possible to reach a positive expected value with systematic 

betting then 0 0β ≠  and 1 0β > . 

 

Testing the betting market efficiency seems to be straightforward but the main problem is to have 

an appropriate estimate for the objective probability in horse race betting. For instance, the lotto 

game and the horse race betting differ fundamentally from each other2. However, if we have 

enough historical data from the horse race betting for a particular horse, we can estimate the 

objective probabilities that give us some tools to make comparisons. In Section 3, we discuss the 

estimation methods in details. 

                                                

 

2.3 Well-known Inefficiencies 

The best-known and documented inefficiency in the gambling markets is the Favourite-longshot 

Bias: the favourites are under-bet while the long-shots are overbet (FLB for short)3. As a result, if 

gamblers bet systematically for the favourites, they do not lose as much as gamblers that prefer the 

longshots. In the pari-mutuel system, this phenomenon clearly reflects the gamblers’ behaviour. 

However, FLB is also manifested in the bookmaker market as well, and, therefore, it is probably 

affected by both the demand and supply side elements. For the survey of FLB, see, for instance, 

Thaler & Ziemba (1988), Sauer (1998), Coleman (2004). 

 

We illustrate by a Finnish horse racetrack dataset how FLB contributes to the gambler’s expected 

returns. Figure 1 shows that the rate of net return (RR) on betting horses with high odds (60-70) is 

 
2 The most lotto games use the pari-mutuel system but the objective probabilities for every winning outcome are known. 
Thus, in theory, it is possible to calculate the exact payoff for every outcome if we have information about gamblers 
betting behaviour.   
3 The bias was first noted by Griffith (1949). 
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between -40% and -50%, and betting of favourite yields losses only about -15%.  Theoretical loss –  

the take out rate -   is about -20%. 

 

 
  Figure 1. Odds and the rate of net returns. 

 

 

The Finnish data illustrates very well race track studies around the world from the 1950s to the 

present day, with very few exceptions. Ziemba (2008) notices that FLB has slightly weakened in the 

course of time. However, there is no evidence that FLB has vanished from the racetracks (i.e., the 

markets have come efficient in the long run). Note that Kanto et al. (1992) have previously studied 

Finnish horse racetrack betting. They used a dataset from Teivo racetrack in Tampere that covered 

40 racing days from the autumn 1986 to the summer 1987 with a total of 395 harness races. 

However, they used a double betting dataset instead of a win betting data to analyse FLB.4 They 

found evidence for FLB.  

 

Formally, FLB is valid in the Equation (2.1) when 0 0β <  and 1 1β > . Thus, the large probabilities 

are over weighted and the small probabilities are under weighted. However, although FLB is 

generally accepted, Busche & Hall (1988) found that FLB is not valid in Hong Kong. Busche 

(1994) confirmed this by dataset from Japan and Hong Kong. These results are important because 

                                                 
4 Double bets means that the gamblers have to choose two horses finishing first and second irrespective order and it is 
identical quinella betting in the North America.  
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Busche & Hall (1988) actually found evidence for the opposite: the large probabilities are under 

weighted and the small probabilities are over weighted (i.e. 0 0β >  and 1 1β < ). 

 

What explains bettor’s systematic behaviour? Two main explanations have emerged in the 

literature. Bettors have 1) a risk-love utility function, and/or 2) a biased view of probabilities. Note 

also that Shin (1991, 1992, 1993) showed that the presence of insiders can generate FLB in the 

betting markets.5  

 

If the gamblers (in representative sense) are risk-lovers, they prefer to bet for horses that have a 

small probability of winning, i.e. a high payoff. Thus, they are prepared to pay more to generate 

their utility or enjoyment compared to the risk-aversive or risk neutral gamblers, which are not 

willing to participate the gamble at all (in that case, the word ‘bias’ is somewhat misleading.) 

Weizman (1965) estimated utility function for an average expected utility maximizer. He found that 

the convex utility function explains gamblers’ behaviour, consistent with the assumption of a risk-

love attitude. After Weiztman (1965), for instance, Ali (1977), Golek & Tamarkin (1998) and 

earlier mentioned Kanto et al. (1992) confirmed the risk-love attitude utility function. 

 

Alternatively if bettors have misperceptions of probabilities in the sense that they undervalue the 

high probabilities and overvalue the small ones, favourite-longshot bias results are obtained. This 

was Griffith’s (1949) explanation for the phenomenon. Note that the Prospect Theory (Kahneman & 

Tversky 1992, 1979) takes the biased view of probabilities as a fact. Thus, it can be argued that 

FLB has nothing to do with risk attitude. The question is about the misperception of probabilities. 

 

To make a difference between these two approaches is difficult. Snowberg & Wolfers (2007) 

showed by their win betting dataset that the both approaches are justified. CARA utility function 

with risk-love fits the data reasonably well. Similarly, estimating a probability weighting function 

proposed by the Prospect Theory fits the data equally well.6 Thus, there is nothing in the win 

betting data that allows the econometrician to distinguish between risk-love and misperception. 

However Snowberg & Wolfers (2007) used the win betting data and the exacta (two horses 

finishing in exact order), trifecta (three horses finishing in exact order), and quinella (the gamblers 

have to choose two horses finishing first and second irrespective order) datasets also in their 

                                                 
5 See more explanations, e.g., Sauer (1998). 
6 Although the Prospect Theory suggest two parameter weighting function, they used one parameter function by Prelec 
(1998) in estimation. 
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analysis. Although these datasets have similar problems as the win betting data, their comparison is 

illuminating. Thus, Snowberg & Wolfers (2007) estimated first both the risk-love model and the 

misperception model with the win betting data. Then they predicted the exacta, quinella and trifecta 

datasets’ records with these models and compared fitted models with true records. As a result, they 

noticed that FLB is consistent being driven by the misperception rather than the risk-love model. 

Moreover, they argued that the results suggest that non-expected utility theories (e.g., the Prospect 

Theory) are a promising candidate for explaining racetrack bettor behaviour.  

 

However, efficiency test values can be harmed also by other type inefficiencies. End of the Day 

Effect (EDE) is interesting, although not extensively documented, regularity. In EDE gamblers’ 

behaviour changes to more aggressive in the last races of the day. In practice, this means that FLB 

is especially strong in the last races (see McGlothlin 1956, Ali 1977, and Asch et al. 1982). This is 

consistent with the assumption of the Prospect Theory that bettors are loss-aversive and risk-lover 

below the reference point. Most bettors are losing in the end of the day and the last races give the 

opportunity to win back their money. However, Snowberg & Wolfers (2007) does not confirm EDE 

in their large dataset. 

 

Gambler’s Fallacy (GM). The bias is an incorrect belief of the probability of an independent event 

when the event has recently occurred many times. This is well documented in experiments and in 

real gambling markets as well. For instance, Clotfelter & Cook (1991) noticed that in the lotto 

gambling, gamblers rarely chose the number which occurred in the previous round. Croson & 

Sundali (2005) conducted the field experiment in casinos (roulette) and found the evidence that 

supports the assumption of the gambler’s fallacy. In the case of pari-mutuel horse race betting, the 

gambler’s fallacy hypothesis can be stated as follows. Bettors underestimate the probability of the 

favourite horse if it has won the previous race. Metzger (1985) conducted a study in which she 

validated some support of the gambler’s fallacy: betting on the favourites decreases with the length 

of their run of success. Moreover, Terrell & Farmer (1996) used the dog race data. They noticed 

that betting for the winning dog from the previously track will even constitute a profitable betting 

strategy.  
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3. Methods of Testing Inefficiency 

3.1 Basic Definitions and Notations 

The following definitions are employed. The odds, , are derived from the gambler’s bets in each 

race. Thus,  for the horse i  can be written as  

iO

iO

 

 

1

0

1

(1 )i
i n

ii

bO
b

τ

−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∑

− ,   (3.1)   

 

where  is all bets for the horse ,  is the sum of  bets for all n horses, and ib i ∑=

n

i ib
1 0τ  is the take-

out rate. Respectively, the average or representative subjective probability for horse i  is 

 

( 0
1 1i

iO
)ρ τ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

.   (3.2) 

 

The rate of net return for a one-euro bet is  

 

 ,    (3.3) ( ) 1i i iE R p O= −

 

where ip  is the true winning probability of horse i . Now, if the subjective probability and the true 

probability are equal, then the rate of net return is the take-out rate ( 0τ− ), and the strong market 

efficiency condition 3 is established. However, to test this condition we need, like the bettors need, 

an unbiased estimate of objective probability. 

 

3.2 Different Methods of Estimating (In)efficiency 

There are three different techniques to tackle the issue: 1) grouping by favourite positions, 2) 

grouping by the pari-mutuel odds, and 3) regressing the net return by the odds. These are the 

methods used since the 1950’s. Next we briefly review these methods.  

 

Grouping by favourite positions. The method was first used by Ali (1977). First, we rank horses 

into groups  by the favourite position in every race: the favourite horse is group one, and so on. 

Second, suppose that 

)(h

hπ  is an objective winning probability for a horse, which was included in 
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group . The objective probability for group 1 (the favourite) is calculated by dividing all winning 

cases of group 1 with all races. Formally, it can be represent by 

h

 

                     1

m
jhj

h

Y

m
π ==

∑
,                 1, 2,...,h H=   (3.4) 

 

where , when a horse in group h  wins the race 1=jhY j , and otherwise zero. A number of races is 

. Notice that m jhY  is a Bernoulli variable. Because the races are independent, jhY  is Binomially 

distributed. Moreover, the estimators of expectation and variance of Binomial distribution have the 

following unbiased properties: ( jhE Y ) hπ=  and ( ) (1 ) /jh h hVar Y mπ π= − . Furthermore, the 

subjective probability in each group  can be calculated by h

 

 1

m
jhj

h
hm

ρ
ρ ==

∑
, 1,...,h H= .  (3.5) 

 

The test for gambling biases is  0 :H 0h hρ π− =  for all 1,...,h H= , i.e. are the subjective and 

objective probabilities in different groups equal. We can approximate the Binomial distribution by 

the Normal distribution if the observation sample is large enough. According to the the Central 

Limit Theorem 

 (0,1)
(1 ) /

h h
h

h h

z
m

N
ρ π

π π
−

=
−

∼ .  (3.6) 

 

While this technique is very simple there are also problems in using it.  First, the subjective and the 

objective probabilities have distributions of their own, and they have also distribution specific 

standard errors. However, in Eq. (3.6) we have assumed that the subjective probability is a constant.  

Second, we assume that the favourite positions in all races are Bernoulli variables. However, there 

are high variations in the race circumstances (e.g., jockey, contenders, weather etc.). Basically, the 

nature of probability estimation for a horse is something else than, for instance, estimating objective 

probability of heads in an experimental coin toss trial. The violation of random experiment 
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assumption may bias the objective probability estimate and its standard error7. However, the 

problem of variations of objective probability can be partly avoided by using odds segments. 

 

Grouping by the pari-mutuel odds. This is the approach first used by Griffith (1949), and followed 

by, for instance, Snyder (1978), and Jullien & Salanie (2000). The basic structure of the method is 

close to favourite position analysis but now all information on the odds is used. We divide the 

betting data (horses) into ‘nearby’ equal-sized groups by the odds levels (e.g. 1.0-1.5), and the 

objective probability is the proportion of horses with odds group that won their races (similarly as 

in Eq. (3.4)).8 The benefit of this method is that the variation of the odds is now controlled. 

Respectively, the subjective probability is calculated similarly as in Eq. (3.5) while the rank is 

changed to the odds group. Now we can use estimates of the objective and the subjective 

probabilities to analyze the regression model (Eq. (2.1)). Thus, if we use estimates of the favourite 

grouping process, we have  number of observations. Similarly, the grouping method by the odds 

gives us number of observations that are equal to the number of odds group chosen.  However, Ali 

(1977) noticed, and Busche & Hall (1988) later discussed, that identity of a single horse is lost in 

above practices, i.e. in the odds group includes several horses but only one win. Thus, the estimate 

of the objective probability is somewhat undervalued. Moreover, the aggregation in both methods 

may introduce a bias as well.  

H

 

Regressing the net return by the odds. Vaughan Williams & Paton (1998) responded to the critique 

of the grouping methods by regressing the net return by the odds. In this analysis, the actual return 

for a unit stake on each horse is calculated. In practice, if the horse loses, the return is equal to -1 

euros and, in turn, if the horse wins, the return is equal to the net return 1i iR O= − . Therefore we do 

not need to make any groups and avoid the problems of categorizing. However, the dependent 

variables, the net returns, are left-censored at -1. Consequently, the OLS estimates are biased and 

Censored or Tobit estimation is more appropriate alternative. Moreover, the returns for horses 

within a given race are not independent. Because of this the clustered Tobit estimation by race is 

used. In this context the regression model is 

 

 0 1 ,ij ij ijR O uα α= + +    (3.7) 

 

                                                 
7 We will discuss this topic more precisely in the next section. 
8 The procedure of building the odds groups seems not to affect the results. For instance, Gandar et al. (2001) conclude 
that results were similar if they used even-sized odds categories or even numbers of horses in each odds category. 
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where ijR  is the actual net return to a unit bet on the i th horse in the j th race,  is the horse’s 

odds, and  is an error term with zero expectations. Because of the take-out rate, the net returns 

are expected to be negative with all odds level according to the condition ME2. That is, we have 

ijO

iju

0 0α < . In addition, the existence of FLB indicates that the net returns are lower (higher) for higher 

(lower) odds levels of horses implying that 1 0α < .  

 

4. Alternative Approach to Examine (In)efficiency 

4.1 Background and Motivation 

The categorisation procedures, especially favourite position method, may produce some bias and 

measurement errors in the probability estimates. To motive our alternative method we illustrate the 

problems found above as clearly as possible with our Finnish dataset. In the favourite position 

method the variation of odds does not matter, therefore, calculating the rate of net return by this 

information is somewhat ambiguous. Remember that subjective probabilities are based on odds 

information but the objective probabilities are not.  

 

Figure 2a presents favourites (rank 1) odds distribution in all races. Respectively, Figure 2b shows 

odds distribution for the favourite which have actually won the race.  
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          Figure 2a. Odds distribution of rank 1. Figure 2b. Win odds distribution of rank 1. 

 

We can notice that both distributions are slightly skewed to the right but with a larger extension for 

the win odds distribution. This is obvious because horses with low odds win more probably. 

However, as we know that the objective probability is the ratio of number of wins with a favourite 
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position to number of races, the win odds distribution is redundant. Thus, the rate of net return 

calculated only by favourite odds information will lead to biased results.9 

 

Note that if we use the odds grouping method, the variation of odds can be controlled with odds 

intervals. A thin (wide) interval will minimize (maximize) the variation. Consequently, with the thin 

margin the bias is low, although not completely vanishing. Alternatively, we can simply calculate 

all bets on the favourite and compare this with the actual winning returns. Formally this may be 

written as 

 

  ( )  ( )( )
 ( )h

Sum of Betson Rank h Sum of Rank h ReturnsE R
Sum of Betson Rank h

−
= . (4.1) 

 

Thus, the problems mentioned above can be handled to some extension. However, the questions 

“What is the true relation between the objective and the subjective probability” still remains. 

Naturally, it would be appropriate that there were not any controversial arguments, for instance, on 

the definition of objective probability even FLB is an evident phenomenon irrespective of 

measurement method. Next, we show that an alternative method that will end up at the same 

conclusion, but from a different point of view. 

 

4.2 Alternative Approach 

The previous aggregation methods were based on estimating the probabilities. In turn, our approach 

focuses on the returns of bettors, and indirectly ignores the probabilities. We still keep with the 

favourite position method but instead estimating the objective probabilities, we estimate the 

theoretical value of return of the horse based on historical horse racing results. 

 

To understand the procedure consider the win odds (average), , in every rank category h. The 

win odds are actually materialized and we have a vector of win odds for each rank. Moreover, these 

different win odds categories have their own distributions like in Figure 2b. Consequently, the 

expected rate of net return for 1 euro bet for rank h can be written as 

hWO

 

 ( ) 1h h hE R WOπ= −

                                                

,  (4.2) 

 

( )9 Note that calculating the rate of net return by 0( ) 1 1h
h

h

E R π
= τ

ρ
− − , is biased as well.  
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which constitutes a parallel result with the Eq. (4.1). Note that the objective probability does not 

affect win odds . The probability is constant by nature because bettors cannot influence it. 

Contrary to this, the win odds are directly affected by bettors. 

hWO

 

The approach leads to questions: Are winning odds line with theoretical assumptions of market 

efficiency? The answer to this question is two fold. Firstly, if we assume that bettors behave as 

rational risk neutral gamblers with unbiased view of probabilities, their expected loss or rate of net 

return is 0τ− . This should be valid in every rank category. That is  

 

1 2( ) ( ) ... ( )HE R E R E R 0τ= = = = − . (4.3) 

 

Secondly, according to this assumption, the theoretical or objective (average) of win odds in every 

category can be calculated by Eq. (4.2) 

  

 * 01
h

h

WO τ
π
−

= .  (4.4) 

 

Next we illustrate the idea in Figure 310.  Figure shows how the market efficiency conditions are 

determined with win odds procedure. First, actual win increases with the theoretical value, 

condition ME1 is valid. Second, if the actual wins do not exceed break-even, condition ME2 is 

effective also.  Finally, when the wins are higher for favourites (grey area) and lower for longshot 

(black area) than for the theoretical win odds, the condition ME3 ( 0 0β =  and 1 1β = ) is 

systematically violated. The FLB result is evident. 

 

Our testing strategy is whether the theoretical win odds are equal to actual win odds in each rank 

category. Typically, we could test the equality of theoretical wins and the win odds by using 

information on the win odds’ standard errors and normal distribution assumption. In that case, our 

hypothesis can be written as 

                                              
*

0
*

1

:

: .
h h

h h

H WO WO

H WO WO

=

≠

 

                                                 
10 The idea to Figure 3 is adapted from the Busche & Hall (1988).  
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Figure 3. The market efficiency conditions with win odds. 

 

 

Now, a confidence interval based on  as described above is hWO

 

 , (4.5) *
1 / 2 1 / 2[ ( )] [ ( )]h h h hWO z se WO WO WO z se WOα−− < < + hα−

 

where se( ) is the standard error and  is the value from the N(0,1) distribution with excess 

of probability 1

hWO 1 / 2z α−

/ 2α− . The usual values for α  are 0.10, 0.05 and 0.01.  is rejected if 

exceeds the upper limit or is less than the lower limit. 

0H

hWO

 

However, as we saw in Figure 2b the win odds are not normally distributed. This rises the question 

of the appropriate confidence intervals of equality tests. Thus, the conventional statistical 

interference can be misleading. To secure the robustness of the results, we estimate the confidence 

intervals for each rank category by Bootstrap, and particularly with the percentile method. First, we 

compute 10,000 bootstrapped samples from the win odds data by randomly sampling with 
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replacement. For each bootstrapped sample, we compute mean, , and sort them from the 

smallest to the largest value. Consequently, the 99 % confidence interval can then be estimated 

simply by selecting the bootstrapped statistics at the low 0.5-th and high 99.5-th percentiles. 

Furthermore, in a two-tailed test,  

ˆ b
hWO

 

                       is rejected  if  or . *
0 : hH WO WO= h

)

)

* ,ˆ b low
h hWO WO≤ * ,ˆ b high

h hWO WO≥

 

According to the bootstrapped confidence intervals, we can calculate confidence intervals to the 

actual rate of net returns which can be written as 

 

  and   (4.6) ,ˆ 1 (b low low
h h hWO E Rπ − =

,ˆ 1 (b high high
h h hWO E Rπ − = .    (4.7) 

 

Finally, if the take-out rate 0τ−  is between the above confidence intervals, the condition ME3 and 

Eq. 4.3 are established.   

 

5. Data Descriptions and Necessary Assumptions 

Our dataset is provided by Suomen Hippos (the Finnish Trotting and Breeding Association) 

WebSite with computer programme. In Finland, Suomen Hippos has a monopoly, by law, to 

organize pari-mutuel betting in horse racing (harness), and the total yearly turnover is over 140 

million euros. There are 44 racetracks in Finland and the main track of the country, Vermo, is 

situated in Helsinki, and it hosts over 60 race events every year. The gambling menu covers the 

traditional Win, Show and Quinella betting types that can be bet on every race. Trifecta, as well as 

Superfecta, can be bet on particular races. There is possible off-track betting. Moreover, betting on 

almost every race in Finland via the internet is possible. The tote’s take-out rate on average is 20.97 

% (calculated from the dataset). 

 

The dataset includes win betting information and consists of horse race runs in Finland from 

3.1.2002 to 19.7.2007. On the whole, the data includes 27,595 harness races, and the total number 

of included horses is 345,308. Thus, our data contains odds for the horses in every race and 

information on the exact finishing order of horses. We dropped out the races in which numbers of 

running horses was under ten. Moreover, if the take-out rate was an obvious outlier (i.e. too high or 
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low), we dropped also the race out of the data. The data does not contain any information about the 

characteristics of an individual bettor or average amounts of the bet per race per person. Therefore 

we assume an agent or a bettor that typifies all the bettors, the so-called representative bettor.11  

 

6. Results 

6.1 FLB with Different Tests 

We replicated different test types for FLB by using Finnish dataset. First, the results of grouping by 

favourite positions test (Eq. 4.6)  are shown in Table 1. The results confirm the FLB. Favourites are 

under bet while long-shots are over bet. The cross point is in the 4th  and 5th ranked horse, in which 

the difference between the objective and the subjective probability is not statistical significant. 

These results are line with the previous studies. 

 

                Table 1. Objective and subjective probabilities by favourite position. 

Rank No. races No. wins Average Odds Subjective 
Probability 

Objective 
Probability

Standard 
Deviation 

z-value 
( )h hρ π−  

1 27595 9734 2.71 0.3260 0.3527 0.002876 -9.31*** 
2 27595 4865 4.96 0.1731 0.1763 0.002294 -1.42* 
3 27595 3359 7.23 0.1185 0.1217 0.001968 -1.63* 
4 27595 2460 9.74 0.0886 0.0891 0.001715 -0.31 
5 27595 1863 12.66 0.0690 0.0675 0.001510 0.97 
6 27595 1419 16.08 0.0550 0.0514 0.001330 2.66*** 
7 27595 1040 20.31 0.0442 0.0377 0.001146 5.68*** 
8 27595 901 25.52 0.0357 0.0327 0.001070 2.84*** 
9 27595 691 32.41 0.0287 0.0250 0.000941 3.87*** 

10 27595 480 42.04 0.0227 0.0174 0.000787 6.73*** 
11 23774 359 51.19 0.0186 0.0151 0.000791 4.41*** 
12 17383 204 58.93 0.0159 0.0117 0.000817 5.08*** 
13 10707 123 63.16 0.0144 0.0115 0.001030 2.85*** 
14 8815 79 73.03 0.0121 0.0090 0.001004 3.15*** 
15 6077 45 81.60 0.0105 0.0074 0.001100 2.80*** 
16 2602 15 88.29 0.0094 0.0058 0.001484 2.45* 
* Indicates that the difference is significant at the 10 % level, ** at the 5 %, *** at the 1 %. 

 

Note that rank positions are in logical order, i.e., number of winnings decrease monotonically with 

the rank positions. This is, indeed, a necessary assumption for the method but at the same time it 

supports validity of the ME1 condition.  Moreover, since we have a data on the exact finishing 

order for every horse, we can check the link between rank and finishing position (e.g. did the horse 

ranked 4th really finished the line in 4th place). In most cases the rank positions predicted finishing 

positions quite accurately. The finishing positions were slightly distorted at the top places. This is 

                                                 
11 Naturally, racetrack bettors have heterogeneous preferences and information. 
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due to the fact that in the harness races disqualifications and interrupts are very common. However, 

there does not seem to be any systemic violations that prevent the use of rank positions method.    

 

As the grouping by odds positions method leads to the identical results, we do not present the exact 

results in here. However, we made regression on objective probabilities implied by Eq.(2.1). We 

used the data from the grouping by odds position. Results from the regression are shown in Table 2  

 

  Table 2. OLS estimates of the probabilities. 

Dependent Variable: Objective Probability with the restrictions 0 0β =  and 1 1β =  

 Coefficient Std. 
Error 

Lower 99 % 
Confidence Interval 

Upper 99 % 
Confidence Interaval 

Constant -0.0122** 0.00193 -0.01700 -0.00749 
Subjective Probability 1.1376** 0.01433 1.10227 1.17295 
No. Obs. 29    
R2 0.99    

** Significant at the 1 % level. 

 

The analysis gives clear and unambiguous answers to market efficient conditions ME1 and ME3. 

Bettors’ subjective probability valuations predict actual outcomes. However, the strong efficiency is 

violated. Subjective expectations do not equal the objective outcomes, and the markets are 

systemically characterised by FLB.  

 

Next we Tobit regress net returns on odds (i.e. Eq. 4.7). Our main findings are presented in Table 3. 

  

Table 3. Clustered Tobit regression estimates for net returns. 

Dependent Variable: Net Return 
Coefficient Std. Error Slope 

Constant -21.30** 0.3792 - 
Odds -0.4878** 0.0048 -0.0606 
No. Obs. 345308 
Clusters 27595 
Standard Error 20.93 
Log-Likelihood -176196.4 

Note: Standard errors are Huber/White robust estimates. ** Significant at the 1 % level. 
 

Now, constant is negative ( 0 0α < ). Thus, at the first place it indicates that there is no opportunity 

of systematic winning strategy and the take-out rate makes betting unprofitable for the gambler. 

Moreover, the second estimate is also negative ( 1 0α < ). Therefore, when the odds increase the net 
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returns decrease. FLB is evident by this method as well. Note that Tobit estimates require adjusting 

before they can be interpreted as marginal effects. The correct marginal effect (slope) is estimated 

following Greene (2003). Slope is -0.061. It suggests that an increase in the odds of one unit 

decreases the expected net return of one-euro bet by six cents. The Tobit regression method gives 

answer also to the condition ME2.  There are not systematic bets that have a positive expected 

value. For the comparison, Gandar et al. (2001) examined New-Zealand thoroughbred pari-mutuel 

horse races (117,775 observations), and their results were similar to ours. Thus there seems not to 

be any cultural differences in results.  

 

In summary, Finnish horse race betting markets are efficient in semi-strong level: odds reflect the 

outcomes of the races and there is not opportunity to make any profits by simply systematically 

betting without extended information. However, the assumption of the strong efficiency condition 

EM3 is rejected and the market is characterised by FLB. 

 

6.2 Market Efficiency with Alternative Method 

Next, we present our results of testing FLB that is based on the alternative method. Table 4 includes 

basic information about estimates and bootstrapped confidence intervals. 

 

Table 4. Actual win odds, theoretical win odds, and confidence intervals. 

Rank 
Win 
Odds 

Win 
Theoretical 

Odds 

Bootstrapped 
Lower 99 % 

Conf. 
Interval 

Bootstrapped 
Upper 99 % 

Conf. 
Interval 

Actual 
RR 

Bootstrapped 
RR Lower 
99% Conf. 

Interval 

Bootstrapped 
RR Upper 
99% Conf. 

Interval 
Sum of 
Wins 

1 2.41 2.24 2.38 2.43 -0.151* -0.159 -0.143 23426.1 
2 4.52 4.48 4.48 4.57 -0.203 -0.211 -0.194 22004.3 
3 6.56 6.49 6.48 6.64 -0.202 -0.211 -0.192 22026.4 
4 8.82 8.87 8.68 8.96 -0.214* -0.226 -0.201 21694.1 
5 11.17 11.71 10.98 11.37 -0.246* -0.259 -0.232 20811.2 
6 13.90 15.37 13.61 14.21 -0.285* -0.300 -0.269 19726.7 
7 17.35 20.97 16.90 17.83 -0.346* -0.363 -0.328 18045.2 
8 21.69 24.20 20.99 22.43 -0.292* -0.315 -0.267 19538.6 
9 26.68 31.56 25.70 27.79 -0.332* -0.357 -0.304 18436.8 

10 32.71 45.43 31.08 34.45 -0.431* -0.459 -0.401 15699.2 
11 41.35 52.34 38.96 43.87 -0.376* -0.412 -0.338 14843 
12 46.91 67.34 43.53 50.65 -0.449* -0.489 -0.406 9569.9 
13 50.44 68.79 45.72 55.32 -0.421* -0.475 -0.364 6204 
14 62.49 88.18 56.09 69.15 -0.440* -0.497 -0.380 4937.1 
15 74.98 106.72 66.39 82.85 -0.445* -0.508 -0.387 3374.2 
16 79.55 137.09 66.61 91.55 -0.541* -0.616 -0.472 1193.3 

Note: Table 1 shows other information about ranking procedure (e.g., number of races and wins). The confidence 
intervals for the rate of net return are calculated by the bootstrapped win odds intervals as mentioned in Section 4.2. 
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The theoretical rate of net return or take-out rate is -0.209, and it fits only the bootstrapped 

confidence interval of the groups two and three.  Clearly, FLB is true regardless the method but the 

alternative method is more precise compared to the favourite position method with binomial 

distribution assumptions. Figure 4 illustrates the difference between the tests with the confidence 

intervals of the rate of net returns. The intervals of the rate of net returns calculated by the Binomial 

distribution assumptions are wider than the bootstrapped ones. However, we adhere to our method 

and test other efficiencies as well.12 

 

 

 
Figure 4. Binomial and bootstrapped confidence intervals of the rate of net returns. 
 

 

End of the Day Effect. Next we test for the end of day effect. We did the same calculations as above 

but only information of day’s last races was used. Table 5 shows the results. The confidence 

intervals for the rate of net return are calculated by the bootstrapped win odds intervals in the all 

races. 

 

                                                 
12 We also compared the bootstrapped confidence intervals and the Normal distribution confidence intervals based on 
win odds information. Surprisingly, the results were very similar. The exact results are shown in Appendix 1. 

 20



Table 5. Winning odds, the net rate of returns and confidence intervals for the day’s last race. 

Rank No. Wins Win Odds 
RR Last 

Race 
Bootstrapped RR Lower 
99% Confidence Level 

Bootstrapped RR Upper 
99% Confidence Level 

1 1089 2.48 -0.142(H) -0.159 -0.143 
2 522 4.52 -0.251(L) -0.211 -0.194 
3 360 6.58 -0.248(L) -0.211 -0.192 
4 278 8.84 -0.220 -0.226 -0.201 
5 218 11.00 -0.238 -0.259 -0.232 
6 180 14.10 -0.194(H) -0.300 -0.269 
7 134 16.62 -0.293(H) -0.363 -0.328 
8 120 21.30 -0.188 (H) -0.315 -0.267 
9 104 26.99 -0.109 (H) -0.357 -0.304 

10 53 31.24 -0.474 (L) -0.459 -0.401 
 Notes: 1) H (L) means that the rate of net returns for the last race is higher (lower) than on average.  
 2) The total number of the last races was 3149. 
  

The rate of net return is higher for the favourite and the ‘longshots’ (e.g., 6th and 7th rank) compared 

to the rate of net return of all the races. Thus, the returns of the last races are dispersed and there is 

not clear tendency. This might be due to small number of observations and heterogeneity of data. 

For this reason, let us consider the last two races. Table 6 presents our findings. 

 

Table 6. Winning average odds, the rate of net returns and confidence intervals for the day’s last 

two races 

Rank No. Wins Win Odds 
RR Last 

Race 
Bootstrapped RR Lower 
99% Confidence Level 

Bootstrapped RR Upper 
99% Confidence Level 

1 2163 2.43 -0.166(L) -0.159 -0.143  
2 1066 4.55 -0.229(L) -0.211 -0.194  
3 729 6.50 -0.247(L) -0.211 -0.192  
4 560 9.06 -0.194(H) -0.226 -0.201  
5 435 11.10 -0.232 -0.259 -0.232  
6 341 14.26 -0.227(H) -0.300 -0.269  
7 261 17.18 -0.287(H) -0.363 -0.328  
8 245 21.41 -0.166(H) -0.315 -0.267  
9 173 27.42 -0.246(H) -0.357 -0.304  

10 124 31.44 -0.380(H) -0.459 -0.401 
Notes: 1) See Table 5. 2) The total number of the two last races was 6290. 

 

Again, the results indicate that rates of net return are lower for favourites than on average. The rates 

of net return are dispersed more equally now. Therefore, according to our data, we conclude that 

there is no meaningful end of the day effect in the Finnish horse race betting markets. 
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Gambler’s Fallacy. We tested for the influence of the favourite winner of the previous races in 

betting behaviour. Table 7 shows the main results. 

  

Table 7. The rate of net returns for the favourite when the previous won by the favourite. 

Win Horse 
No. 

Races 
No. 

Wins 
Win 
Odds RR 

Bootstrapped 
RR Lower 99% 

Confidence Level 

Bootstrapped RR 
Upper 99% 

Confidence Level 
Previous Favourite 7519 2717 2.40 -0.133(H) -0.159 -0.143 
Two Previous Favourite 2052 751 2.35 -0.141(H) -0.159 -0.143 
Three Previous Favourite 560 200 2.40 -0.141(H) -0.159 -0.143 

Notes: See Table 5 and 6. 
 

The results are interesting. The favourite winner of previous races increases the rate of net returns 

for the favourite bet. This gives some support to the gambler’s fallacy assumption. On the other 

hand, the favourite winner of two and three previous races decreases the returns for the favourite bet 

compared to the favourite winner of first race. Thus, this rejects the gambler’s fallacy assumption 

that the rate of net returns systematically increases when favourites win the races one after another.  

Moreover, we also tested how the returns are influenced by wins of ‘similar’ horses in the previous 

race. ‘Similar’ means here the rank was the same in different races (e.g. the 3th positioned horse 

won the two races straight). The rate of net return was -0,206, thus there is no tendency for 

gambler’s fallacy. 

 

On general level the results imply that the Finnish horse betting markets are semi-strong efficient 

and FLB assumption cannot rejected. However, the bias is not strong enough for profitable bettings. 

Moreover, it is not possible to make profits by using some other theoretical and/or empirical 

regularity, for instance, end of the day effect or gambler’s fallacy strategies. In fact, we claim that 

Prospect Theory assumptions like the loss aversive or risk-love behaviour ‘in below of the reference 

point’ do not seem to be evident in our data.  

 

7. Conclusions and Discussion 

We tested efficiency of gambling markets in Finland by a large dataset from harness horse races. In 

order to test efficiency market hypotheses we used several methods that have been presented in 

literature. We also shortly discussed the weak and strong points of different methods. An new 

alternative method was presented also. It was based on the actual winning odds and the theoretical 

assumptions of the winnings. In this approach we calculated confidence intervals to the rate of net 

returns by Bootstrap method for the more appropriate statistical testing. The results imply that 
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markets are semi-strong efficient and characterised by FLB. However, the meaningful evidence for 

other ‘anomalies’ as end of the day effect or gambler’s fallacy was not found.  This is a minor 

drawback for predictions from the Prospect Theory.  

 

The weakness of our testing approach is that we do not have information concerning the individual 

betting behaviour (e.g., amount of bets). The observed biases are not grounded with individual 

betting behaviour. It can be assumed that bettors may distribute their total sum of bets on different 

horses. In that case, the long-shots can be over-bets because of the minimum bet constrain (which is 

used at least in Finnish horse racetrack)13. Although this creates some bias in betting volumes the 

betting behaviour could still be biased and driven by misperception of probabilities. However this is 

question of future research based on the individual betting data. 

 

We suggest that our results concerning FLB in the horse racetrack cover also other type of gambles 

in Finland as well. In Finland, for instance, RAY (Finland’s Slot Machine Association) has a full 

legal monopoly to organize the casino table games in the game halls and in the clubs (restaurants). 

Therefore, the organization can determine game prices (e.g., the take-out rate) without competition 

and conduct price discrimination. For instance, European roulette is typically a game with the same 

take-out rate regardless of betting strategy. Usually it is -0,027. However, in Finland the take-out 

rate of betting favourites (e.g., black or red) is also -0,027, but the take-out rate of betting longshot 

(e.g., single number) is -0,162. The difference is remarkable. It is not know why RAY offers these 

prices. On explanation is that that the customers, for whatever reasons, are prepared to pay more for 

longshots than favourites. Thus, from the bookmaker’s point of view, the information on the 

gambler’s behaviour or on the market inefficiencies can be used, for instance, in planning the new 

gamble menus or setting up the rules of gambles. On the other hand, it would be appropriate to 

inform the gamblers about the observed game facts.  

 

 

 

 

 

 

 

                                                 
13 We thank Timo Kuosmanen for this insight. 
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Appendix 1. The confidence intervals of the rate of net returns based on different approaches. 
 
 

Rank 

Actual Rate 
of Net 
Return 

Normal Dist. RR 
Lower 99% 

Confidence Level 

Normal Dist. RR 
Upper 99% 

Confidence Level 

Binomial RR 
Lower 99% 
Confidence 

Level 

Binomial RR 
Upper 99% 
Confidence 

Level 

Bootstrapped RR 
Lower 99% 

Confidence Level 

Bootstrapped RR 
Upper 99% 

Confidence Level 
1 -0.151 -0.159 -0.143 -0.169 -0.133 -0.159 -0.143 
2 -0.203 -0.211 -0.194 -0.229 -0.176 -0.211 -0.194 
3 -0.202 -0.212 -0.192 -0.235 -0.168 -0.211 -0.192 
4 -0.214 -0.226 -0.202 -0.253 -0.175 -0.226 -0.201 
5 -0.246 -0.259 -0.232 -0.289 -0.202 -0.259 -0.232 
6 -0.285 -0.301 -0.270 -0.333 -0.237 -0.300 -0.269 
7 -0.346 -0.363 -0.329 -0.397 -0.295 -0.363 -0.328 
8 -0.292 -0.316 -0.268 -0.352 -0.232 -0.315 -0.267 
9 -0.332 -0.358 -0.306 -0.397 -0.267 -0.357 -0.304 

10 -0.431 -0.461 -0.401 -0.497 -0.365 -0.459 -0.401 
11 -0.376 -0.413 -0.338 -0.460 -0.291 -0.412 -0.338 
12 -0.449 -0.492 -0.407 -0.548 -0.351 -0.489 -0.406 
13 -0.421 -0.476 -0.365 -0.555 -0.287 -0.475 -0.364 
14 -0.440 -0.499 -0.381 -0.602 -0.278 -0.497 -0.380 
15 -0.445 -0.507 -0.382 -0.658 -0.232 -0.508 -0.387 
16 -0.541 -0.617 -0.466 -0.846 -0.237 -0.616 -0.472 
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